Chemistry and Technology of Fuels and Oils

, Volume 54, Issue 2, pp 187–194 | Cite as

Performance Study of High-Temperature Foaming Agents for Improved Steam Flooding

  • Fa-Jun ZhaoEmail author
  • Yong-Jian Liu
  • Yun-Long Wang
  • Hao-liang Liu
  • Hai-cheng Ma

Performance studies of foaming agents in terms of thermal endurance, foaminess, foam stability, and structural and morphological robustness are carried out to investigate the mechanism of steam overlay and channeling that arise during steam flooding of heavy-oil reservoirs. The results show that agent CX-4 possesses excellent thermal endurance, foaminess, and foam stability. High temperatures did not affect the foaming-agent structure although the foam hexagonal structure weakened. The absorbed films of foam bubbles have centered ring structures intertwined with each other and overlapped significantly. The spatial distribution and three-dimensional foam structure become slightly worse. The foaming agent consists mainly of the four elements S, C, Na, and O. High-temperature treatment did not affect the elemental composition and molecular structure.


heavy oil high-temperature foaming agent steam flooding scanning electron microscope energy-dispersive x-ray spectrometer 



The research was financially supported by the Natural Science Foundation of Heilongjiang Province of China and Major National Special Projects for Oil and Gas, China.


  1. 1.
    D. C. Bond and O. C. Holbrook, US Pat. No. 2,866,507, Dec. 30, 1958.Google Scholar
  2. 2.
    J. E. Harwsen and M. Dalland, SPE 20193, SPE DOE Enhanced Oil Recovery Symposium, Tulsa, Apr. 22-25, 1990, pp. 209-222.Google Scholar
  3. 3.
    J. Yang, V. Jovancicev, and S. Ramachandran, Colloid Surf, A, 309, 177-181(2007).CrossRefGoogle Scholar
  4. 4.
    R. F. Li, W. Yan, S. Liu, et al., Foam mobility control for surfactant EOR, SPE113910, SPE Symposium on Improved Oil Recovery, Tulsa, Apr. 20-23, 2008, pp. 1-16.Google Scholar
  5. 5.
    H. M. Yu, B. Q. Yang, G. R. Xu, et al., SPE 113913, SPE Symposium on Improved Oil Recovery, Tulsa, Apr. 20-23,2008, pp. 1-10.Google Scholar
  6. 6.
    X. Q. Yuan, K. L. Wang, J. F. Chen, et al., Acta Pet. Sin., 31, 87-90 (2010).Google Scholar
  7. 7.
    H. Liu, P. Ye, Y. Liu, et al., Acta Pet. Sin., 31, 91-95 (2010).CrossRefGoogle Scholar
  8. 8.
    X. N. Zhang, G. S. Li, Z. W. Huang, et al., Acta Pet. Sin., 31, 134-138 (2010).Google Scholar
  9. 9.
    X. Tan, J. S. Sun, X. G. Xu, et al., Acta Pet. Sin., 31, 829-833 (2010).Google Scholar
  10. 10.
    J. F. Gong, Y. B. Cao, P. Z. Tang, et al., Pet. Explor. Dev, 33, 212-216 (2006).Google Scholar
  11. 11.
    Q. Chen, M. G Gerritsen, and A. R. Kovscek, SPE 129847, SPE Improved Oil Recovery Symposium, Tulsa, Apr. 24-28,2010, pp. 1-18.Google Scholar
  12. 12.
    H. M. Muijs, P. P. M. Keijzer, and R. J. Wiersma, SPE17361, SPE Enhanced Oil Recovery Symposium, Tulsa, Apr. 16-21,1988, pp. 905-914.Google Scholar
  13. 13.
    K. Mannhardt, J. Pet. Technol., 23, 189-200 (1999).Google Scholar
  14. 14.
    D.A. Hutchinson, B. D. Demiral, and L. Castanier, SPE23709, SPE Latin America Petroleum Engineering Conference, Caracas, Mar. 8-11, 1992, pp. 205-209.Google Scholar
  15. 15.
    H. Ge, P. L. Fu, J. Wang, et al., Appl. Chem. Ind., 32, 16-18 (2003).Google Scholar
  16. 16.
    D. M. Sunnatov, Experimental study of steam surfactant flood for enhancing heavy oil recovery after watellooding, Texas A&M University, Houston, 2010, pp. 1-4.Google Scholar
  17. 17.
    L W. Hiom, Soc. Pet. Eng. J., 8, 359-369 (1969).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fa-Jun Zhao
    • 1
    Email author
  • Yong-Jian Liu
    • 1
  • Yun-Long Wang
    • 1
  • Hao-liang Liu
    • 1
  • Hai-cheng Ma
    • 1
  1. 1.Key Laboratory of Oil Recovery Enhance of Ministry of EducationNortheast Petroleum UniversityDaqingChina

Personalised recommendations