Chemistry and Technology of Fuels and Oils

, Volume 54, Issue 2, pp 123–131 | Cite as

Investigation of Thermal Effects on Samples of Coals to Determine the Prospect of Their Utilization as Sources of Gaseous Fuels

  • R. R. KhasanovEmail author
  • M. A. Varfolomeev
  • D. A. Emel’yanov
  • A. I. Rakhimzyanov

One of the promising ways of expanding energy resource base is production of combustible gas from coalbeds. The yield of gaseous components from samples of Visean coals of Tatarstan upon thermal impact was studied in this work by combined thermogravimetric and IR spectrometric method. It is demonstrated that methane begins to appear actively at 384-405°C, depending on the test coal sample. In this process, the yield of methane could be as much as 30 wt. % and higher, which confirms the prospect of getting gaseous fuel from Visean coal deposits by thermal impact.


coals underground gasification combustible gas Visean deposits thermal impact thermogravimetry IR spectrometry 


The work was carried out with subsidies granted within the framework of the state support of the Kazan’ (Volga Region) Federal University for promoting its competitiveness amongst the leading world scientific and educational centers.


  1. 1.
    E. V. Kreinin, Unconventional Thermal Technology of Production of Hard-to-Extract Fuels: Coal and Hydrocarbon Materials [in Russian], OOO IRTs Gazprom, Moscow (2004), p. 302.Google Scholar
  2. 2.
    E. V. Kreinin, Unconventional Hydrocarbon Sources. New Technologies of Their Development [in Russian], Prospekt, Moscow (2016), p. 208.Google Scholar
  3. 3.
    L. Walker, “Underground coal gasification: a clean coal technology ready for development,” Auustral. Coal Rev., 19-21 (1999).Google Scholar
  4. 4.
    T. A. Moore, Int. J. of Coal Geol., 101, 36-81 (2012).CrossRefGoogle Scholar
  5. 5.
    R. R. Khasanov, L. Ya. Kizil’shtein, Sh. Z. Gafurov, et al., Petrographic Types of Visean Coals of the Kama Basin. An Atlas [in Russian], Izd. Kazan. Univ.., Kazan (2001), p. 176.Google Scholar
  6. 6.
    R. R. Khasanov and I. A. Larochkina, Neft. Khoz., No. 1, 36-39 (2013).Google Scholar
  7. 7.
    V. I. Bondarenko, G. B. Varlamov, I. A. Vol’chin, et al., Power Engineering: History, Present, Future, Vol. 1. From Fire and Water to Elcectricity [in Russian], 2005, p. 297.Google Scholar
  8. 8.
    A. N. Grachev, M. A. Varfolomeev, D. A. Emel’yanov, et al., Khim. Tekhnol. Topl. Masel, No. 5, 6-10 (2017).Google Scholar
  9. 9.
    M. A. Varfolomeev, A. N. Grachev, A. A. Makarov, et al., Khim. Tekhnol. Topl. Masel, No. 1, 83-88 (2015).Google Scholar
  10. 10.
    S. I. Skipochka, and T. A. Palamarchuk, Geotekh. Mekhanika, No. 78, 43-47 (2008).Google Scholar
  11. 11.
    N. M. Storonskii, V. T. Khryukin, D. V. Mitronov, et al., Ross. Khim. Zh., LII, No. 6, 63-72 (2008).Google Scholar
  12. 12.
    R. R. Khasanov, Sh. Z. Gafurov, I. K. Muzaffarov, et al., Neft. Khoz., No. 10, 49-51 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. R. Khasanov
    • 1
    Email author
  • M. A. Varfolomeev
    • 1
  • D. A. Emel’yanov
    • 1
  • A. I. Rakhimzyanov
    • 1
  1. 1.Kazan’ Federal UniversityKazan’Russia

Personalised recommendations