Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 53, Issue 2, pp 163–172 | Cite as

Effect of Hydrocarbon Composition on Quality and Operating Characteristics of Middle Distillate Fractions and Low-Viscosity Marine Fuels

  • N. K. Kondrasheva
  • D. O. Kondrashev
  • V. A. Rudko
  • A. A. Shaidulina
Article

The physicochemical properties of the middle distillates of exhaustive refining of crude oil at one of the Russian refineries are studied from the standpoint of their utilization as components of low-viscosity marine fuels. The performance properties of diesel fractions after hydrofining and of light gas oils of catalytic cracking and delayed carbonization are determined and compared. The physicochemical and performance properties of the studied fractions are found to depend on the hydrocarbon composition of the fractions. Based on the noted dependences, the optimum component composition of low-viscosity marine fuel is developed and recommended for introduction.

Key words

low-viscosity marine fuel diesel fuel middle distillates hydrocarbon composition 

Notes

The work was carried out with grant RNF 15-17-00017.

References

  1. 1.
    T. N. Mitusova, V. V. Bulatnikov, M. V. Bobkova, et al., No. 4, 31-33 (2011).Google Scholar
  2. 2.
    A. M. Danilov, Application of Additives in Fuels [in Russian], Khimizdat, St. Petersburg (2010), 368 pp.Google Scholar
  3. 3.
    T. N. Mitusova, E. V. Polina, M. V. Kalinina, Modern Diesel Fuels and Their Additives [in Russian], Tekhnika, Moscow (2002), 64 pp.Google Scholar
  4. 4.
    J. Blunden, V. P. Aneja, W. A. Lonneman, Atm. Environ., 39, 6707-6718 (2005).CrossRefGoogle Scholar
  5. 5.
    B. Tirillini, G. Verdelli, F. Paolocci, et al., Phytochemistry, 55, 983-985 (2000).CrossRefGoogle Scholar
  6. 6.
    B. P. J. De Lacy Costello, P. Evans, R. J. Ewen, et al, Plant Pathol., 48, 345 (1999).CrossRefGoogle Scholar
  7. 7.
    Z. Krkosova, R. Kubinec, G. Addova, et al., Petroleum & Coal, 49 (3), 51-62 (2007).Google Scholar
  8. 8.
    G. Mann, M. Muhlstadt, J. Braband, et al, Tetrahedron, 23 (8), 3393-3401 (1967).CrossRefGoogle Scholar
  9. 9.
    I. M. Hold, S. Schouten, H. M. E. van Kaam-Peters, et al, Org. Geochem., 28 (3-4), 179-194 (1998).CrossRefGoogle Scholar
  10. 10.
    F. Khorasheh, M. R. Gray, M. L. Selucky, J. Chromatogr., 481, 1-16 (1989).CrossRefGoogle Scholar
  11. 11.
    G. C. Cripps, Deep-Sea Res. II, 42 (4-5), 1123-1135 (1995).CrossRefGoogle Scholar
  12. 12.
    A. R. Katritzky, K. Chen, U. Maran, et al, Anal. Chem., 72 (1), 101-109 (2000).CrossRefGoogle Scholar
  13. 13.
    F. Kenig, J. S. Sinninghe Damste, A. C. Kock-van Dalen, et al, Geochim. Cosmochim. Acta, 59 (14), 2999-3015 (1995).CrossRefGoogle Scholar
  14. 14.
    A. V. Sitdikova, A. S. Kovin, Neftepererabotka i Neftekhimiya, No. 6, 3-6 (2009).Google Scholar
  15. 15.
    N. K. Kondrasheva, D. O. Kondrashev, V. A. Rudko, Akademicheskii Zhurnal Zapadnoi Sibiri, No. 2, 41 (2014).Google Scholar
  16. 16.
    V. A. Khavkin, L. A. Gulyaeva, B. V. Vinokurov, Neftepererabotka i Neftekhimiya, No. 7, 8-11 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • N. K. Kondrasheva
    • 1
  • D. O. Kondrashev
    • 1
    • 2
  • V. A. Rudko
    • 1
  • A. A. Shaidulina
    • 1
  1. 1.Federal State Budget Educational Establishment of Higher EducationSt. Petersburg Mining UniversitySt. PetersburgRussia
  2. 2.Public Company Gazprom NeftMoscowRussia

Personalised recommendations