Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 47, Issue 1, pp 23–27 | Cite as

Efficacy ofapplication of zinc oxide on the surface of the NiO/Al2O3 catalytic system

  • E. H. El-Mossalamy
  • S. N. Basahel
  • A. Y. Obaid
Research
  • 31 Downloads

The surface and catalytic properties of the NiO/Al2O3 system after deposition of 3 to 7% zinc oxide on its surface and heat treatment at 400, 600, and 800°C were investigated by X-ray diffraction analysis, nitrogen adsorption at −196°C, and catalytic oxidation of carbon monoxide by oxygen at 150-250°C. It was shown that calcination of the catalyst at 400°C decreases the specific surface area, while it increases it at 600 and 800°C. The decrease in the specific surface area is accompanied by an increase in the size of the NiO/Al2O3 crystallites. The activity of the catalysts calcined at 400°C in oxidation of carbon monoxide by oxygen, manifested by a constant reaction rate, increases with an increase in the zinc oxide content on the surface. After deposition of the zinc oxide, the mechanism of the oxidation reaction remains as before, but the concentration of active centers in the catalyst changes.

Key words

surface area deposition of zinc oxide crystallite size oxidation of carbon monoxide 

References

  1. 1.
    A. Bielanski, K. Dyrek, Z. Kluz, et al., Bull. Acad. Polym. Sci., 12, 657 (1964).Google Scholar
  2. 2.
    A. Hiromiohi, S. Yasukagu, and Y. Yukio, J. Catal., 9, 146 (1967).CrossRefGoogle Scholar
  3. 3.
    A. P. Rudenko and E. M. Ezzo, Kinet. Catal., 11, 1064 (1970).Google Scholar
  4. 4.
    E. M. Ezzo, A. M. Youssef, and M. C. Nawar, Fertil. Technol., 12, 264 (1975).Google Scholar
  5. 5.
    M. Samaane and S. J. Teichner, Bull. Soc. Chim. Fr., 1927, 1934 (1968).Google Scholar
  6. 6.
    W. O. Milligan and L. Merten, J. Phys. Chem., 50, 465 (1946).CrossRefGoogle Scholar
  7. 7.
    R. Fricke and Z. Weitbecht, Elektrochem., 48, 87 (1942).Google Scholar
  8. 8.
    E. Gill and J. P. Holden, J. Am. Ceram. Soc., 46, 12 (1963).Google Scholar
  9. 9.
    R. F. Cooley and J. S. Reed, Ibid., 55, 395 (1972).CrossRefGoogle Scholar
  10. 10.
    R. E. Carter, Ibid., 44, 116 (1961).CrossRefGoogle Scholar
  11. 11.
    A. Cimino, M. Lo Jacono, and M. Schiavelo, J. Phys. Chem., 79, 243 (1975).CrossRefGoogle Scholar
  12. 12.
    H. Krischner, K. Torkar, and P. Hornisch, Monatsh. Chem., 99, 1733 (1968).CrossRefGoogle Scholar
  13. 13.
    R. L. Chin and D. M. Hercules, J. Catal., 74, 121 (1982).CrossRefGoogle Scholar
  14. 14.
    M. Lo Jacono and M. Schiavello, J. Phys. Chem., 79, 243 (1975).CrossRefGoogle Scholar
  15. 15.
    B. V. Erofeev, I. P. Kutanov, E. N. Ermoleulenko, et al., Izv. Fiz. Org. Khim. Nauk, No. 2, 5 (1978).Google Scholar
  16. 16.
    B. D. Cullity, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New York (2001).Google Scholar
  17. 17.
    M. Mokhtar, H. G. El-Shobaky, and A. S. Ahmed, Colloid. Surf., 89 (2002).Google Scholar
  18. 18.
    R. Fricke and Z. Weitbecht, Elektrochem., 48, 87 (1942).Google Scholar
  19. 19.
    R. F. Cooley and J. S. Reed, J. Am. Ceram. Soc., 55, 395 (1972).CrossRefGoogle Scholar
  20. 20.
    S. Yoshitomi, K. Kokada, Y. Morita, et al., J. Chem. Soc. Jpn., 66.Google Scholar
  21. 21.
    N. M. Deraz, Colloids Surfaces, 218, 213 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • E. H. El-Mossalamy
    • 1
  • S. N. Basahel
    • 1
  • A. Y. Obaid
    • 1
  1. 1.King Abdul Aziz UniversityAbdul AzizSaudi Arabia

Personalised recommendations