Chemistry and Technology of Fuels and Oils

, Volume 43, Issue 2, pp 140–146 | Cite as

Features of analysis of associative hydrocarbon media. Applicability of refractometric methods

  • I. N. Evdokimov
  • A. P. Losev
Methods of Analysis


The refractive index and optical absorption of solutions of crude oil in toluene were investigated. It was found that the optical properties of systems with an extremely low content of macromolecular substances deviate significantly from Bouguer-Lambert-Beer and other laws. The sensitivity of the refractive index to association of the macromolecular components of hydrocarbon systems was revealed. To increase the accuracy of the analysis, the necessity of a detailed study of the optical properties of associative hydrocarbon systems before plotting calibration curves was demonstrated.


Refractive Index Effective Refractive Index Linear Calibration Curve Macromolecular Component Macromolecular Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. V. Busygina and I. G. Busygin, Natural Gas and Gas Condensate Processing Technology [in Russian], IPK Gazprompechat Orenburggazpromservis OOO, Orenburg (2002).Google Scholar
  2. 2.
    I. N. Evdokimov, N. Yu. Eliseev, and B. R. Akhmetov, J. Petrol. Sci. Eng., No. 37, 135–143 (2003).Google Scholar
  3. 3.
    S. Betancourt, G. Fujisawa, O. C. Mullins, et al., Oilfield Rev., 54–61 (Autumn, 2003).Google Scholar
  4. 4.
    O. C. Mullins, Structures and Dynamics of Asphaltenes, Springer, New York (1999).Google Scholar
  5. 5.
    A. G. Siryuk, E. D. Radchenko, and M. M. Fernandes-Gomes, Khim. Tekhnol. Topl. Masel, No. 7, 48–51 (1979).Google Scholar
  6. 6.
    L. G. Gurvich, Scientific Principles of Oil Refining [in Russian], Gostoptekhizdat, Moscow-Leningrad (1940).Google Scholar
  7. 7.
    K. L. Gawrys, Doct. Dissertation, Raleigh (2005).Google Scholar
  8. 8.
    S. Goncalves, J. Castilo, A. Fernandez, et al., Fuel, No. 83, 1823–1828 (2004).Google Scholar
  9. 9.
    G. Andreata, N. Bostrom, and O. C. Mullins, Langmuir, No. 21, 2728–2736 (2005).Google Scholar
  10. 10.
    H. W. Yarranton, J. Dispersion Sci. Technol., No. 26, 5–8 (2005).Google Scholar
  11. 11.
    I. N. Evdokimov, N. Yu. Eliseev, and B. R. Akhmetov, J. Petrol. Sci. Eng., 37, No. 3–4, 145–152 (2003).CrossRefGoogle Scholar
  12. 12.
    I. N. Evdokimov, N. Yu. Eliseev, and B. R. Akhmetov, Fuel, 82, No. 7, 817–823 (2003).CrossRefGoogle Scholar
  13. 13.
    I. N. Evdokimov, N. Yu. Eliseev, and B. R. Akhmetov, Ibid., 85, No. 10–11, 1465–1472 (2006).CrossRefGoogle Scholar
  14. 14.
    F. Arteaga-Larios, A. Cosultchi, and E. Perez, Energy Fuels, 19, No. 2, 477–484 (2005).CrossRefGoogle Scholar
  15. 15.
    R. V. Pol’, Introduction to Optics [in Russian], OGIZ, Moscow-Leningrad (1947).Google Scholar
  16. 16.
    M. M. Kusakov, Methods of Determination of the Physicochemical Properties of Petroleum Products [in Russian], ONTI KNTP SSSR, Moscow-Leningrad (1936).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • I. N. Evdokimov
    • 1
  • A. P. Losev
    • 1
  1. 1.I. M. Gubkin Russian State University of Oil and GasRussia

Personalised recommendations