Understanding racial disparities in renal cell carcinoma incidence: estimates of population attributable risk in two US populations

  • Catherine L. Callahan
  • Kendra Schwartz
  • Douglas A. Corley
  • Julie J. Ruterbusch
  • Wei K. Zhao
  • Brian Shuch
  • Barry I. Graubard
  • Nathaniel Rothman
  • Wong-Ho Chow
  • Debra T. Silverman
  • Mark P. Purdue
  • Jonathan N. HofmannEmail author
Original Paper



Renal cell carcinoma (RCC) incidence is higher among black than white Americans. The reasons for this disparity remain unclear.


We calculated race- and sex-specific population attributable risk percentages (PAR%) and their 95% confidence intervals (CI) for hypertension and chronic kidney disease (CKD) among black and white subjects ≥  50 years of age from the US Kidney Cancer Study (USKC; 965 cases, 953 controls), a case–control study in Chicago and Detroit, and a nested case–control study in the Kaiser Permanente Northern California health care network (KPNC; 2,162 cases, 21,484 controls). We also estimated PAR% for other modifiable RCC risk factors (cigarette smoking, obesity) in USKC.


In USKC, the PAR% for hypertension was 50% (95% CI 24–77%) and 44% (95% CI 25–64%) among black women and men, respectively, and 29% (95% CI 13–44%) and 27% (95% CI 14–39%) for white women and men, respectively. In KPNC, the hypertension PAR% was 40% (95% CI 18–62%) and 23% (95% CI 2–44%) among black women and men, and 27% (95% CI 20–35%) and 19% (95% CI 14–24%) among white women and men, respectively. The PAR% for CKD in both studies ranged from 7 to 10% for black women and men but was negligible (<1%) for white subjects. In USKC, the PAR% for current smoking was 20% and 8% among black and white men, respectively, and negligible and 8.6% for black and white women, respectively. The obesity PAR% ranged from 12 to 24% across all race/sex strata.


If the associations found are causal, interventions that prevent hypertension and CKD among black Americans could potentially eliminate the racial disparity in RCC incidence (hypothetical black:white RCC incidence ratio of 0.5).


Kidney cancer African Americans Hypertension Chronic kidney disease Population attributable risk 



This work was supported by the Intramural Research Program of the US National Cancer Institute (NCI), National Institutes of Health (NIH).

Supplementary material

10552_2019_1248_MOESM1_ESM.docx (22 kb)
Supplementary file1 (DOCX 21 kb)


  1. 1.
  2. 2.
    Chow WH, Shuch B, Linehan WM et al (2013) Racial disparity in renal cell carcinoma patient survival according to demographic and clinical characteristics. Cancer 119(2):388–394. CrossRefPubMedGoogle Scholar
  3. 3.
    Cutler JA, Sorlie PD, Wolz M et al (2008) Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension 52(5):818–827. CrossRefPubMedGoogle Scholar
  4. 4.
    Centers for Disease Control and Prevention (CDC) (2007) Prevalence of chronic kidney disease and associated risk factors—United States, 1999–2004. MMWR Morb Mortal Wkly Rep 56(8):161–165Google Scholar
  5. 5.
    Ogden CL, Carroll MD, Curtin LR et al (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295(13):1549–1555. CrossRefPubMedGoogle Scholar
  6. 6.
    Hofmann JN, Schwartz K, Chow WH et al (2013) The association between chronic renal failure and renal cell carcinoma may differ between black and white Americans. Cancer Causes Control 24(1):167–174. CrossRefPubMedGoogle Scholar
  7. 7.
    Colt JS, Schwartz K, Graubard BI et al (2011) Hypertension and risk of renal cell carcinoma among White and Black Americans. Epidemiology 22(6):797–804. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hall EC, Segev DL, Engels EA (2013) Racial/ethnic differences in cancer risk after kidney transplantation. Am J Transpl 13(3):714–720. CrossRefGoogle Scholar
  9. 9.
    Hofmann JN, Corley DA, Zhao WK et al (2015) Chronic kidney disease and risk of renal cell carcinoma: differences by race. Epidemiology 26(1):59–67. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Beebe-Dimmer JL, Colt JS, Ruterbusch JJ et al (2012) Body mass index and renal cell cancer: the influence of race and sex. Epidemiology (Cambridge, Mass) 23(6):821–828. CrossRefGoogle Scholar
  11. 11.
    Gago-Dominguez M, Castelao JE (2006) Lipid peroxidation and renal cell carcinoma: further supportive evidence and new mechanistic insights. Free Radic Biol Med 40(4):721–733. CrossRefPubMedGoogle Scholar
  12. 12.
    Bruzzi P, Green SB, Byar DP et al (1985) Estimating the population attributable risk for multiple risk factors using case–control data. Am J Epidemiol 122(5):904–914CrossRefGoogle Scholar
  13. 13.
    Benichou J, Gail MH (1990) Variance calculations and confidence intervals for estimates of the attributable risk based on logistic models. Biometrics 46(4):991–1003CrossRefGoogle Scholar
  14. 14.
    Graubard BI, Fears TR (2005) Standard errors for attributable risk for simple and complex sample designs. Biometrics 61(3):847–855. CrossRefPubMedGoogle Scholar
  15. 15.
    Surveillance E, End Results (SEER) Program ( Research data. In: National Cancer Institute D, Surveillance Research Program, ed. based on the November 2016 submission ed, 1973–2014
  16. 16.
    Setiawan VW, Stram DO, Nomura AM et al (2007) Risk factors for renal cell cancer: the multiethnic cohort. Am J Epidemiol 166(8):932–940. CrossRefPubMedGoogle Scholar
  17. 17.
    Benichou J, Chow WH, McLaughlin JK et al (1998) Population attributable risk of renal cell cancer in Minnesota. Am J Epidemiol 148(5):424–430CrossRefGoogle Scholar
  18. 18.
    Callahan CL, Hofmann JN, Corley DA et al (2018) Obesity and renal cell carcinoma risk by histologic subtype: a nested case–control study and meta-analysis. Cancer Epidemiol 56:31–37. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Purdue MP, Moore LE, Merino MJ et al (2013) An investigation of risk factors for renal cell carcinoma by histologic subtype in two case–control studies. Int J Cancer 132(11):2640–2647. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cheng S, Claggett B, Correia AW et al (2014) Temporal trends in the population attributable risk for cardiovascular disease: the Atherosclerosis Risk in Communities Study. Circulation 130(10):820–828. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2019

Authors and Affiliations

  • Catherine L. Callahan
    • 1
  • Kendra Schwartz
    • 2
  • Douglas A. Corley
    • 3
  • Julie J. Ruterbusch
    • 2
  • Wei K. Zhao
    • 3
  • Brian Shuch
    • 4
  • Barry I. Graubard
    • 5
  • Nathaniel Rothman
    • 1
  • Wong-Ho Chow
    • 6
  • Debra T. Silverman
    • 1
  • Mark P. Purdue
    • 1
  • Jonathan N. Hofmann
    • 1
    Email author
  1. 1.Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleUSA
  2. 2.Department of Family Medicine and Public Health Sciences, Karmanos Cancer InstituteWayne State UniversityDetroitUSA
  3. 3.Division of ResearchKaiser Permanente Northern CaliforniaOaklandUSA
  4. 4.Department of UrologyYale School of MedicineNew HavenUSA
  5. 5.Biostatistics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleUSA
  6. 6.Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations