Advertisement

Cancer Causes & Control

, Volume 29, Issue 1, pp 143–156 | Cite as

Serum cholesterol trajectories in the 10 years prior to lymphoma diagnosis

  • Sharon Hensley Alford
  • George Divine
  • Chun Chao
  • Laurel A. Habel
  • Nalini Janakiraman
  • Yun Wang
  • Heather Spencer Feigelson
  • Delia Scholes
  • Doug Roblin
  • Mara M. Epstein
  • Lawrence Engel
  • Suzanne Havstad
  • Karen Wells
  • Marianne Ulcickas Yood
  • Joan Fortuny
  • Christine Cole Johnson
  • for the Cancer Research Network Lymphoma Study Group
Original paper

Abstract

Purpose

Many studies suggest a role for cholesterol in cancer development. Serum cholesterol levels have been observed to be low in newly diagnosed lymphoma cases. The objective of these analyses was to examine the time-varying relationship of cholesterol with lymphomagenesis in the 10 years prior to diagnosis by lymphoma subtype.

Methods

Participants were selected from the combined membership of six National Cancer Institute-funded Cancer Research Network health plans from 1998 to 2008, excluding members with human immunodeficiency virus, cancer (except lymphoma), or organ transplants. Incident lymphoma cases within this population were ascertained and matched with up to five controls. Total serum cholesterol, high-density lipoprotein, and low-density lipoprotein were collected from plan databases. Multilevel, multivariable longitudinal models were fit after choosing the best polynomial order by deviance statistics for selected lymphoma histotypes to examine pre-diagnosis cholesterol trajectories: Hodgkin lymphoma (n = 519) and all non-Hodgkin lymphomas combined (n = 12,635) as well as six subtypes of the latter.

Results

For all categories, lymphoma cases had statistically significantly lower estimated total serum cholesterol, high-density lipoprotein, and low-density lipoprotein levels than controls in the years prior to diagnosis/index date. Between-group differences were most pronounced 3–4 years prior to diagnosis, when cases’ cholesterol levels declined steeply.

Conclusions

This analysis is the first to examine changes in serum cholesterol for a decade prior to lymphoma diagnosis. A drop in cholesterol levels was evident several years before diagnosis. Our results suggest that cholesterol-related pathways have an important relationship with lymphomagenesis and low cholesterol could be a preclinical lymphoma marker.

Keywords

Cholesterol Lymphoma Hodgkin lymphoma Non-Hodgkin lymphomas 

Notes

Acknowledgments

This work was funded by the USA NIH National Cancer Institute, R01 CA140754. Additional Members of the Cancer Research Network Lymphoma Study Group: Ninah Achacoso, Denise Boudreau, Lie Chen, Melody Eide, James Fraser, Gene Hart, Jill Koshiol, Melissa Preciado, Junling Ren, Zaineb Sharafali, Leslie Spangler, David Tabano, Noah Weston, Kimberley Woodcroft, and Michelle Wrenn.

Compliance with ethical standards

Conflict of interest

The authors of this manuscript have no conflicts of interest to report.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Supplementary material

10552_2017_987_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 KB)
10552_2017_987_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 KB)
10552_2017_987_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 KB)
10552_2017_987_MOESM4_ESM.docx (29 kb)
Supplementary material 4 (DOCX 29 KB)
10552_2017_987_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 14 KB)
10552_2017_987_MOESM6_ESM.docx (38 kb)
Supplementary material 6 (DOCX 37 KB)
10552_2017_987_MOESM7_ESM.docx (29 kb)
Supplementary material 7 (DOCX 29 KB)
10552_2017_987_MOESM8_ESM.docx (15 kb)
Supplementary material 8 (DOCX 15 KB)
10552_2017_987_MOESM9_ESM.tiff (288.4 mb)
Supplementary material 9 (TIFF 295312 KB)
10552_2017_987_MOESM10_ESM.tiff (288.4 mb)
Supplementary material 10 (TIFF 295312 KB)
10552_2017_987_MOESM11_ESM.tiff (288.4 mb)
Supplementary material 11 (TIFF 295312 KB)
10552_2017_987_MOESM12_ESM.tiff (123.6 mb)
Supplementary material 12 (TIFF 126562 KB)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30.  https://doi.org/10.3322/caac.21387 CrossRefPubMedGoogle Scholar
  2. 2.
    Garg A, Hosfield EM, Brickner L (2011) Disseminated intravascular large B cell lymphoma with slowly decreasing high-density lipoprotein cholesterol. South Med J 104(1):53–56.  https://doi.org/10.1097/SMJ.0b013e3181fcd4b9 CrossRefPubMedGoogle Scholar
  3. 3.
    Spiegel RJ, Schaefer EJ, Magrath IT, Edwards BK (1982) Plasma lipid alterations in leukemia and lymphoma. Am J Med 72(5):775–782CrossRefPubMedGoogle Scholar
  4. 4.
    Chao FC, Efron B, Wolf P (1975) The possible prognostic usefulness of assessing serum proteins and cholesterol in malignancy. Cancer 35(4):1223–1229CrossRefPubMedGoogle Scholar
  5. 5.
    Blackman JD, Cabana VG, Mazzone T (1993) The acute-phase response and associated lipoprotein abnormalities accompanying lymphoma. J Intern Med 233(2):201–204CrossRefPubMedGoogle Scholar
  6. 6.
    Kuzu OF, Noory MA, Robertson G (2016) The role of cholesterol in cancer. Can Res 76(8):2063–2070CrossRefGoogle Scholar
  7. 7.
    Singer JD, Willett JB (2003) Applied longitudinal analysis: modeling change and event occurrence. Oxford University Press, OxfordCrossRefGoogle Scholar
  8. 8.
    Kritchevsky SB, Wilcosky TC, Morris DL, Truong KN, Tyroler HA (1991) Changes in plasma lipid and lipoprotein cholesterol and weight prior to the diagnosis of cancer. Cancer Res 51(12):3198–3203PubMedGoogle Scholar
  9. 9.
    Strohmaier S, Edlinger M, Manjer J, Stocks T, Bjørge T, Borena W, Häggström C, Engeland A, Nagel G, Almquist M, Selmer R, Tretli S, Concin H, Hallmans G, Jonsson H, Stattin P, Ulmer H (2013) Total serum cholesterol and cancer incidence in the metabolic syndrome and cancer project (Me-Can). PLoS ONE 8(1):e54242.  https://doi.org/10.1371/journal.pone.0054242 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Strasak AM, Pfeiffer RM, Brant LJ, Rapp K, Hilbe W, Oberaigner W, Lang S, Borena W, Concin H, Diem G, Ruttmann E, Glodny B, Pfeiffer KP, Ulmer H, Group VPS (2009) Time-dependent association of total serum cholesterol and cancer incidence in a cohort of 172,210 men and women: a prospective 19-year follow-up study. Ann Oncol 20(6):1113–1120.  https://doi.org/10.1093/annonc/mdn736 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nagel G, Stocks T, Späth D, Hjartåker A, Lindkvist B, Hallmans G, Jonsson H, Bjørge T, Manjer J, Häggström C, Engeland A, Ulmer H, Selmer R, Concin H, Stattin P, Schlenk RF (2012) Metabolic factors and blood cancers among 578,000 adults in the metabolic syndrome and cancer project (Me-Can). Ann Hematol 91(10):1519–1531.  https://doi.org/10.1007/s00277-012-1489-z CrossRefPubMedGoogle Scholar
  12. 12.
    Hiatt RA, Fireman BH (1986) Serum cholesterol and the incidence of cancer in a large cohort. J Chronic Dis 39(11):861–870CrossRefPubMedGoogle Scholar
  13. 13.
    Lim U, Gayles T, Katki HA, Stolzenberg-Solomon R, Weinstein SJ, Pietinen P, Taylor PR, Virtamo J, Albanes D (2007) Serum high-density lipoprotein cholesterol and risk of non-hodgkin lymphoma. Cancer Res 67(11):5569–5574.  https://doi.org/10.1158/0008-5472.CAN-07-0212 CrossRefPubMedGoogle Scholar
  14. 14.
    Ahn J, Lim U, Weinstein SJ, Schatzkin A, Hayes RB, Virtamo J, Albanes D (2009) Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer. Cancer Epidemiol Biomarkers Prev 18(11):2814–2821.  https://doi.org/10.1158/1055-9965.EPI-08-1248 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Morimoto Y, Conroy SM, Ollberding NJ, Henning SM, Franke AA, Wilkens LR, Goodman MT, Hernandez BY, Le Marchand L, Henderson BE, Kolonel LN, Maskarinec G (2012) Erythrocyte membrane fatty acid composition, serum lipids, and non-Hodgkin’s lymphoma risk in a nested case–control study: the multiethnic cohort. Cancer Causes Control 23(10):1693–1703.  https://doi.org/10.1007/s10552-012-0048-1 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Hama S, Hough G, Bachini E, Grijalva VR, Wagner AC, Shaposhnik Z, Fogelman AM (2005) The double jeopardy of HDL. Ann Med 37(3):173–178.  https://doi.org/10.1080/07853890510007322 CrossRefPubMedGoogle Scholar
  17. 17.
    Tietge UJ, Maugeais C, Cain W, Rader DJ (2003) Acute inflammation increases selective uptake of HDL cholesteryl esters into adrenals of mice overexpressing human sPLA2. Am J Physiol Endocrinol Metab 285(2):E403–E411.  https://doi.org/10.1152/ajpendo.00576.2002 CrossRefPubMedGoogle Scholar
  18. 18.
    Kontush A, Chapman MJ (2012) Structure, metabolism, function, and therapeutics. Wiley, Hoboken, NJGoogle Scholar
  19. 19.
    Spieker LE, Ruschitzka F, Lüscher TF, Noll G (2004) HDL and inflammation in atherosclerosis. Curr Drug Targets Immune Endocr Metabol Disord 4(1):51–57CrossRefPubMedGoogle Scholar
  20. 20.
    Cockerill GW, Huehns TY, Weerasinghe A, Stocker C, Lerch PG, Miller NE, Haskard DO (2001) Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation. Circulation 103(1):108–112CrossRefPubMedGoogle Scholar
  21. 21.
    Ansell BJ, Watson KE, Fogelman AM, Navab M, Fonarow GC (2005) High-density lipoprotein function recent advances. J Am Coll Cardiol 46(10):1792–1798.  https://doi.org/10.1016/j.jacc.2005.06.080 CrossRefPubMedGoogle Scholar
  22. 22.
    Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96(12):1221–1232.  https://doi.org/10.1161/01.RES.0000170946.56981.5c CrossRefPubMedGoogle Scholar
  23. 23.
    Mathews CK, Van Holde KE, Appling DR, Anthony-Cahill SJ (2013) Biochemistry, 4th edn. Prentice Hall, TorontoGoogle Scholar
  24. 24.
    Wang Y, Rogers PM, Su C, Varga G, Stayrook KR, Burris TP (2008) Regulation of cholesterologenesis by the oxysterol receptor, LXRalpha. J Biol Chem 283(39):26332–26339.  https://doi.org/10.1074/jbc.M804808200 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746):34–47CrossRefPubMedGoogle Scholar
  26. 26.
    Kuliszkiewicz-Janus M, Małecki R, Mohamed AS (2008) Lipid changes occuring in the course of hematological cancers. Cell Mol Biol Lett 13(3):465–474.  https://doi.org/10.2478/s11658-008-0014-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Naik PP, Ghadge MS, Raste AS (2006) Lipid profile in leukemia and Hodgkin’s disease. Indian J Clin Biochem 21(2):100–102.  https://doi.org/10.1007/BF02912921 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Morton LM, Hartge P, Holford TR, Holly EA, Chiu BC, Vineis P, Stagnaro E, Willett EV, Franceschi S, La Vecchia C, Hughes AM, Cozen W, Davis S, Severson RK, Bernstein L, Mayne ST, Dee FR, Cerhan JR, Zheng T (2005) Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the International lymphoma epidemiology consortium (interlymph). Cancer Epidemiol Biomarkers Prev 14(4):925–933.  https://doi.org/10.1158/1055-9965.EPI-04-0693 CrossRefPubMedGoogle Scholar
  29. 29.
    Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS (2006) Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 107(1):265–276.  https://doi.org/10.1182/blood-2005-06-2508 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alexander DD, Mink PJ, Adami HO, Cole P, Mandel JS, Oken MM, Trichopoulos D (2007) Multiple myeloma: a review of the epidemiologic literature. Int J Cancer 120(Suppl 12):40–61.  https://doi.org/10.1002/ijc.22718 CrossRefPubMedGoogle Scholar
  31. 31.
    Willett EV, Morton LM, Hartge P, Becker N, Bernstein L, Boffetta P, Bracci P, Cerhan J, Chiu BC, Cocco P, Dal Maso L, Davis S, De Sanjose S, Smedby KE, Ennas MG, Foretova L, Holly EA, La Vecchia C, Matsuo K, Maynadie M, Melbye M, Negri E, Nieters A, Severson R, Slager SL, Spinelli JJ, Staines A, Talamini R, Vornanen M, Weisenburger DD, Roman E, Consortium I (2008) Non-Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph Consortium. Int J Cancer 122(9):2062–2070.  https://doi.org/10.1002/ijc.23344 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Britton JA, Khan AE, Rohrmann S, Becker N, Linseisen J, Nieters A, Kaaks R, Tjønneland A, Halkjaer J, Severinsen MT, Overvad K, Pischon T, Boeing H, Trichopoulou A, Kalapothaki V, Trichopoulos D, Mattiello A, Tagliabue G, Sacerdote C, Peeters PH, Bueno-de-Mesquita HB, Ardanaz E, Navarro C, Jakszyn P, Altzibar JM, Hallmans G, Malmer B, Berglund G, Manjer J, Allen N, Key T, Bingham S, Besson H, Ferrari P, Jenab M, Boffetta P, Vineis P, Riboli E (2008) Anthropometric characteristics and non-Hodgkin’s lymphoma and multiple myeloma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Haematologica 93(11):1666–1677.  https://doi.org/10.3324/haematol.13078 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Sharon Hensley Alford
    • 1
  • George Divine
    • 1
  • Chun Chao
    • 2
  • Laurel A. Habel
    • 3
  • Nalini Janakiraman
    • 4
  • Yun Wang
    • 1
  • Heather Spencer Feigelson
    • 5
  • Delia Scholes
    • 6
  • Doug Roblin
    • 7
  • Mara M. Epstein
    • 8
  • Lawrence Engel
    • 9
  • Suzanne Havstad
    • 1
  • Karen Wells
    • 1
  • Marianne Ulcickas Yood
    • 10
  • Joan Fortuny
    • 11
  • Christine Cole Johnson
    • 1
  • for the Cancer Research Network Lymphoma Study Group
  1. 1.Department of Public Health SciencesHenry Ford Health SystemDetroitUSA
  2. 2.Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaUSA
  3. 3.Division of ResearchKaiser Permanente Northern CaliforniaOaklandUSA
  4. 4.Hematology/OncologyHenry Ford HospitalDetroitUSA
  5. 5.Institute for Health ResearchKaiser Permanente ColoradoDenverUSA
  6. 6.Kaiser Permanente WashingtonKPWA Health Research InstituteSeattleUSA
  7. 7.School of Public HealthGeorgia State UniversityAtlantaUSA
  8. 8.Department of Medicine, The Meyers Primary Care InstituteUniversity of Massachusetts Medical SchoolWorcesterUSA
  9. 9.Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA
  10. 10.School of Public Health, EpidemiologyBoston UniversityBostonUSA
  11. 11.RTI-HSBarcelonaSpain

Personalised recommendations