Cancer Causes & Control

, Volume 28, Issue 2, pp 167–176 | Cite as

Proceedings of the third international molecular pathological epidemiology (MPE) meeting

  • Peter T. Campbell
  • Timothy R. Rebbeck
  • Reiko Nishihara
  • Andrew H. Beck
  • Colin B. Begg
  • Alexei A. Bogdanov
  • Yin Cao
  • Helen G. Coleman
  • Gordon J. Freeman
  • Yujing J. Heng
  • Curtis Huttenhower
  • Rafael A. Irizarry
  • N. Sertac Kip
  • Franziska Michor
  • Daniel Nevo
  • Ulrike Peters
  • Amanda I. Phipps
  • Elizabeth M. Poole
  • Zhi Rong Qian
  • John Quackenbush
  • Harlan Robins
  • Peter K. Rogan
  • Martha L. Slattery
  • Stephanie A. Smith-Warner
  • Mingyang Song
  • Tyler J. VanderWeele
  • Daniel Xia
  • Emily C. Zabor
  • Xuehong Zhang
  • Molin Wang
  • Shuji Ogino
Review

Abstract

Molecular pathological epidemiology (MPE) is a transdisciplinary and relatively new scientific discipline that integrates theory, methods, and resources from epidemiology, pathology, biostatistics, bioinformatics, and computational biology. The underlying objective of MPE research is to better understand the etiology and progression of complex and heterogeneous human diseases with the goal of informing prevention and treatment efforts in population health and clinical medicine. Although MPE research has been commonly applied to investigating breast, lung, and colorectal cancers, its methodology can be used to study most diseases. Recent successes in MPE studies include: (1) the development of new statistical methods to address etiologic heterogeneity; (2) the enhancement of causal inference; (3) the identification of previously unknown exposure-subtype disease associations; and (4) better understanding of the role of lifestyle/behavioral factors on modifying prognosis according to disease subtype. Central challenges to MPE include the relative lack of transdisciplinary experts, educational programs, and forums to discuss issues related to the advancement of the field. To address these challenges, highlight recent successes in the field, and identify new opportunities, a series of MPE meetings have been held at the Dana–Farber Cancer Institute in Boston, MA. Herein, we share the proceedings of the Third International MPE Meeting, held in May 2016 and attended by 150 scientists from 17 countries. Special topics included integration of MPE with immunology and health disparity research. This meeting series will continue to provide an impetus to foster further transdisciplinary integration of divergent scientific fields.

Keywords

Molecular pathological epidemiology Meeting report Proceedings 

References

  1. 1.
    Ogino S, Stampfer M (2010) Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology. J Natl Cancer Inst 102:365–367CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ogino S, Lochhead P, Chan AT et al (2013) Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 26:465–484CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nishi A, Kawachi I, Koenen KC, Wu K, Nishihara R, Ogino S (2015) Lifecourse epidemiology and molecular pathological epidemiology. Am J Prev Med 48:116–119CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nishi A, Milner DA Jr, Giovannucci EL et al (2016) Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Rev Mol Diagn 16:11–23CrossRefPubMedGoogle Scholar
  5. 5.
    Ogino S, Chan AT, Fuchs CS, Giovannucci E (2011) Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 60:397–411CrossRefPubMedGoogle Scholar
  6. 6.
    Ogino S, Nishihara R, VanderWeele TJ et al (2016) Review article: the role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology 27:602–611CrossRefPubMedGoogle Scholar
  7. 7.
    Curtin K, Slattery ML, Samowitz WS. (2011) CpG island methylation in colorectal cancer: past, present and future. Pathol Res Int, pp 902674.Google Scholar
  8. 8.
    Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R (2014) Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol 20:6055–6072CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jiang MJ, Dai JJ, Gu DN, Huang Q, Tian L (2016) Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials. Biochim Biophys Acta 1866:163–176PubMedGoogle Scholar
  10. 10.
    Kuipers EJ, Grady WM, Lieberman D, et al. (2015) Colorectal cancer. Nat Rev Dis Primers. 1:15065.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Martinez-Useros J, Garcia-Foncillas J (2016) Obesity and colorectal cancer: molecular features of adipose tissue. J Transl Med 14:21CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kuroiwa-Trzmielina J, Wang F, Rapkins RW et al (2016) SNP rs16906252C>T is an expression and methylation quantitative trait locus associated with an increased risk of developing MGMT-methylated colorectal cancer. Clin Cancer Res 22:6266–6277CrossRefPubMedGoogle Scholar
  13. 13.
    Chia WK, Ali R, Toh HC (2012) Aspirin as adjuvant therapy for colorectal cancer–reinterpreting paradigms. Nat Rev Clin Oncol 9:561–570CrossRefPubMedGoogle Scholar
  14. 14.
    Hughes LA, Khalid-de Bakker CA, Smits KM, et al. (2012) The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta. 1825: 77–85.PubMedGoogle Scholar
  15. 15.
    Buchanan DD, Win AK, Walsh MD et al (2013) Family history of colorectal cancer in BRAF p.V600E-mutated colorectal cancer cases. Cancer Epidemiol Biomarkers Prev 22:917–926CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Figueiredo JC, Lewinger JP, Song C et al (2011) Genotype-environment interactions in microsatellite stable/microsatellite instability-low colorectal cancer: results from a genome-wide association study. Cancer Epidemiol Biomark Prev 20:758–766CrossRefGoogle Scholar
  17. 17.
    Lee PN, Forey BA, Coombs KJ (2012) Systematic review with meta-analysis of the epidemiological evidence in the 1900s relating smoking to lung cancer. BMC Cancer 12:385CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB, Maisonneuve P (2008) Smoking and colorectal cancer: a meta-analysis. JAMA 300:2765–2778CrossRefPubMedGoogle Scholar
  19. 19.
    Secretan B, Straif K, Baan R et al (2009) A review of human carcinogens–Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol 10:1033–1034CrossRefPubMedGoogle Scholar
  20. 20.
    Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50:113–130CrossRefPubMedGoogle Scholar
  21. 21.
    Poynter JN, Haile RW, Siegmund KD et al (2009) Associations between smoking, alcohol consumption, and colorectal cancer, overall and by tumor microsatellite instability status. Cancer Epidemiol Biomark Prev 18:2745–2750CrossRefGoogle Scholar
  22. 22.
    Slattery ML, Curtin K, Anderson K et al (2000) Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon tumors. J Natl Cancer Inst 92:1831–1836CrossRefPubMedGoogle Scholar
  23. 23.
    Limsui D, Vierkant RA, Tillmans LS et al (2010) Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst 102:1012–1022CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nishihara R, Morikawa T, Kuchiba A et al (2013) A prospective study of duration of smoking cessation and colorectal cancer risk by epigenetics-related tumor classification. Am J Epidemiol 178:84–100CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ogino S, Campbell PT, Nishihara R et al (2015) Proceedings of the second international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control 26:959–972CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Curtin K, Samowitz WS, Ulrich CM et al (2011) Nutrients in folate-mediated, one-carbon metabolism and the risk of rectal tumors in men and women. Nutr Cancer 63:357–366CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Giannakis M, Hodis E, Jasmine Mu X et al (2014) RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet 46:1264–1266CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Giannakis M, Mu XJ, Shukla SA et al (2016) Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep 15:857–865CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Howie B, Sherwood AM, Berkebile AD et al (2015) High-throughput pairing of T cell receptor alpha and beta sequences. Sci Transl Med 7:301ra131CrossRefPubMedGoogle Scholar
  31. 31.
    Masugi Y, Nishihara R, Yang J et al (2016) Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut (in press)Google Scholar
  32. 32.
    Mima K, Nishihara R, Nowak JA et al (2016) MicroRNA MIR21 and T Cells in Colorectal Cancer. Cancer. Immunol Res 4:33–40Google Scholar
  33. 33.
    Mima K, Sukawa Y, Nishihara R et al (2015) Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 1:653–661Google Scholar
  34. 34.
    Ogino S, Galon J, Fuchs CS, Dranoff G (2011) Cancer immunology–analysis of host and tumor factors for personalized medicine. Nat Rev Clin Oncol 8:711–719CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Song M, Nishihara R, Wang M et al (2016) Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut 65:296–304CrossRefPubMedGoogle Scholar
  36. 36.
    Hanyuda A, Ogino S, Qian ZR et al (2016) Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. Int J Cancer 139:854–868CrossRefPubMedGoogle Scholar
  37. 37.
    Song M, Nishihara R, Cao Y et al (2016) Marine omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer characterized by tumor-infiltrating T cells. JAMA Oncol 2:1197–1206CrossRefPubMedGoogle Scholar
  38. 38.
    Tan DS, Mok TS, Rebbeck TR (2016) Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography. J Clin Oncol 34:91–101CrossRefPubMedGoogle Scholar
  39. 39.
    Almendro V, Cheng YK, Randles A, et al. (2014) Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep 6:514–527.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Almendro V, Kim HJ, Cheng YK et al (2014) Genetic and phenotypic diversity in breast tumor metastases. Cancer Res 74:1338–1348CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Janiszewska M, Liu L, Almendro V et al (2015) In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat Genet 47:1212–1219CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bogdanov AA Jr, Dixon AJ, Gupta S et al (2016) Synthesis and testing of modular dual-modality nanoparticles for magnetic resonance and multispectral photoacoustic imaging. Bioconjug Chem 27:383–390CrossRefPubMedGoogle Scholar
  43. 43.
    Begg CB, Orlow I, Zabor EC, et al. (2015) Identifying etiologically distinct sub-types of cancer: a demonstration project involving breast cancer. Cancer Med 4:1432–1439.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    VanderWeele TJ, Robins JM (2007) The identification of synergism in the sufficient-component-cause framework. Epidemiology 18:329–339CrossRefPubMedGoogle Scholar
  45. 45.
    VanderWeele TJ (2009) Sufficient cause interactions and statistical interactions. Epidemiology 20:6–13CrossRefPubMedGoogle Scholar
  46. 46.
    Vanderweele TJ (2010) Sufficient cause interactions for categorical and ordinal exposures with three levels. Biometrika 97:647–659CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Glass K, Quackenbush J, Spentzos D, Haibe-Kains B, Yuan GC (2015) A network model for angiogenesis in ovarian cancer. BMC Bioinform 16:115CrossRefGoogle Scholar
  48. 48.
    Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15:R31CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Huttenhower C, Knight R, Brown CT et al (2014) Advancing the microbiome research community. Cell 159:227–230CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dubin N, Pasternack BS (1986) Risk assessment for case-control subgroups by polychotomous logistic regression. Am J Epidemiol 123:1101–1117PubMedGoogle Scholar
  51. 51.
    Begg CB, Zabor EC, Bernstein JL, Bernstein L, Press MF, Seshan VE (2013) A conceptual and methodological framework for investigating etiologic heterogeneity. Stat Med 32:5039–5052CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chatterjee N, Sinha S, Diver WR, Feigelson HS (2010) Analysis of cohort studies with multivariate and partially observed disease classification data. Biometrika 97:683–698CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang M, Kuchiba A, Ogino S (2015) A meta-regression method for studying etiological heterogeneity across disease subtypes classified by multiple biomarkers. Am J Epidemiol 182:263–270CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rosner B, Glynn RJ, Tamimi RM et al (2013) Breast cancer risk prediction with heterogeneous risk profiles according to breast cancer tumor markers. Am J Epidemiol 178:296–308CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schildkraut JM, Iversen ES, Akushevich L et al (2013) Molecular signatures of epithelial ovarian cancer: analysis of associations with tumor characteristics and epidemiologic risk factors. Cancer Epidemiol Biomark Prev 22:1709–1721CrossRefGoogle Scholar
  56. 56.
    Nevo D, Zucker DM, Tamimi RM, Wang M (2016) Accounting for measurement error in biomarker data and misclassification of subtypes in the analysis of tumor data. Stat Med 35:5686–5700CrossRefPubMedGoogle Scholar
  57. 57.
    Wang M, Spiegelman D, Kuchiba A et al (2016) Statistical methods for studying disease subtype heterogeneity. Stat Med 35:782–800CrossRefPubMedGoogle Scholar
  58. 58.
    The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Dorman SN, Baranova K, Knoll JH et al (2016) Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol Oncol 10:85–100CrossRefPubMedGoogle Scholar
  60. 60.
    Chan AT, Ogino S, Fuchs CS (2009) Aspirin use and survival after diagnosis of colorectal cancer. JAMA 302:649–658CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Reimers MS, Bastiaannet E, Langley RE, et al. (2014) Expression of HLA class I antigen, aspirin use, and survival after a diagnosis of colon cancer. JAMA Intern Med 174:732–739.CrossRefPubMedGoogle Scholar
  62. 62.
    Domingo E, Church DN, Sieber O et al (2013) Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol 31:4297–4305CrossRefPubMedGoogle Scholar
  63. 63.
    Cao Y, Nishihara R, Qian ZR et al (2016) Regular aspirin use associates with lower risk of colorectal cancers with low numbers of tumor-infiltrating lymphocytes. Gastroenterology 151:879–892CrossRefPubMedGoogle Scholar
  64. 64.
    Campbell PT, Deka A, Briggs P et al (2014) Establishment of the cancer prevention study II nutrition cohort colorectal tissue repository. Cancer Epidemiol Biomark Prev 23:2694–2702CrossRefGoogle Scholar
  65. 65.
    Campbell PT, Jacobs ET, Ulrich CM et al (2010) Case-control study of overweight, obesity, and colorectal cancer risk, overall and by tumor microsatellite instability status. J Natl Cancer Inst 102:391–400CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Campbell PT, Newton CC, Newcomb PA et al (2015) Association between body mass index and mortality for colorectal cancer survivors: overall and by tumor molecular phenotype. Cancer Epidemiol Biomark Prev 24:1229–1238CrossRefGoogle Scholar
  67. 67.
    Newcomb PA, Baron J, Cotterchio M et al (2007) Colon Cancer Family Registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol Biomark Prev 16:2331–2343CrossRefGoogle Scholar
  68. 68.
    Phipps AI, Ahnen DJ, Campbell PT et al (2014) Family history of colorectal cancer is not associated with colorectal cancer survival regardless of microsatellite instability status. Cancer Epidemiol Biomark Prev 23:1700–1704CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Peter T. Campbell
    • 1
  • Timothy R. Rebbeck
    • 2
    • 3
  • Reiko Nishihara
    • 3
    • 4
  • Andrew H. Beck
    • 5
    • 6
  • Colin B. Begg
    • 7
  • Alexei A. Bogdanov
    • 8
  • Yin Cao
    • 4
    • 9
    • 10
  • Helen G. Coleman
    • 11
  • Gordon J. Freeman
    • 3
  • Yujing J. Heng
    • 5
    • 6
  • Curtis Huttenhower
    • 12
    • 13
  • Rafael A. Irizarry
    • 12
    • 14
  • N. Sertac Kip
    • 15
  • Franziska Michor
    • 12
    • 14
  • Daniel Nevo
    • 2
    • 12
  • Ulrike Peters
    • 16
    • 17
  • Amanda I. Phipps
    • 16
    • 17
  • Elizabeth M. Poole
    • 2
    • 18
  • Zhi Rong Qian
    • 3
  • John Quackenbush
    • 12
    • 14
  • Harlan Robins
    • 16
  • Peter K. Rogan
    • 19
  • Martha L. Slattery
    • 20
  • Stephanie A. Smith-Warner
    • 2
    • 4
  • Mingyang Song
    • 4
    • 9
  • Tyler J. VanderWeele
    • 2
  • Daniel Xia
    • 21
  • Emily C. Zabor
    • 7
  • Xuehong Zhang
    • 18
  • Molin Wang
    • 2
  • Shuji Ogino
    • 2
    • 3
    • 22
    • 23
  1. 1.Epidemiology Research ProgramAmerican Cancer SocietyAtlantaUSA
  2. 2.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA
  3. 3.Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA
  4. 4.Department of NutritionHarvard T.H. Chan School of Public HealthBostonUSA
  5. 5.Cancer Research InstituteBeth Israel Deaconess Cancer CenterBostonUSA
  6. 6.Department of PathologyHarvard Medical School, Beth Israel Deaconess Medical CenterBostonUSA
  7. 7.Department of Epidemiology and BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkUSA
  8. 8.Department of RadiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  9. 9.Clinical and Translational Epidemiology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  10. 10.Division of GastroenterologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  11. 11.Epidemiology and Health Services Research Group, Centre for Public HealthQueens University BelfastBelfastNorthern Ireland
  12. 12.Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonUSA
  13. 13.Microbial Systems and Communities, Genome Sequencing and Analysis ProgramThe Broad InstituteCambridgeUSA
  14. 14.Department of Biostatistics and Computational BiologyDana-Farber Cancer InstituteBostonUSA
  15. 15.Laboratory Medicine and PathologyGeisinger Health SystemDanvilleUSA
  16. 16.Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  17. 17.Department of Epidemiology, School of Public HealthUniversity of WashingtonSeattleUSA
  18. 18.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  19. 19.Department of BiochemistryUniversity of Western OntarioLondonCanada
  20. 20.University of Utah School of MedicineSalt Lake CityUSA
  21. 21.Department of PathologyBrigham and Women’s HospitalBostonUSA
  22. 22.Division of MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  23. 23.Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUSA

Personalised recommendations