Cancer Causes & Control

, Volume 25, Issue 6, pp 737–745 | Cite as

Waist circumference, body mass index, and postmenopausal breast cancer incidence in the Cancer Prevention Study-II Nutrition Cohort

  • Mia M. GaudetEmail author
  • Brian D. Carter
  • Alpa V. Patel
  • Lauren R. Teras
  • Eric J. Jacobs
  • Susan M. Gapstur
Original paper



High body mass index (BMI) is an established risk factor for postmenopausal breast cancer. However, less is known about associations with waist circumference. In particular, it is unclear whether a larger waist circumference is associated with risk more than would be expected based solely on its contribution to BMI.


We examined the associations of BMI and waist circumference with risk of postmenopausal breast cancer, with and without mutual adjustment, in the Cancer Prevention Study-II Nutrition Cohort. Analyses included 28,965 postmenopausal women who reported weight and waist circumference on a questionnaire in 1997 and were not taking menopausal hormones.


During a median follow-up of 11.58 years, 1,088 invasive breast cancer cases were identified. Hazard ratios (HR) and 95 % confidence intervals (CI) were estimated from multivariable-adjusted Cox proportional hazard regression models. Without adjustment for BMI, a larger waist circumference was associated with higher risk of breast cancer (per 10 cm increase in waist circumference, HR = 1.13, 95 % CI 1.08–1.19). However, adjustment for BMI eliminated the association with waist circumference (per 10 cm HR = 1.00, 95 % CI 0.92–1.08). BMI was associated with risk unadjusted for waist circumference (per 1 kg/m2 HR = 1.04, 95 % CI 1.03–1.05) and adjusted for waist circumference (per 1 kg/m2 HR = 1.04, 95 % CI 1.02–1.06).


Our study of predominantly white women provides evidence that a larger waist circumference is associated with higher risk of postmenopausal breast cancer, but not beyond its contribution to BMI.


Breast cancer Obesity Waist circumference 



The American Cancer Society (ACS) funds the creation, maintenance, and updating of the Cancer Prevention Study-II (CPS-II) cohort. The authors thank the CPS-II participants and Study Management Group for their invaluable contributions to this research. The authors would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program.

Conflict of interest

The author(s) declare that they have no competing interests.


  1. 1.
    Ogden CL, Carroll MD, Kit BK, Flegal KM (2012) Prevalence of Obesity in the United States, 2009–2010. NCHS Data Brief 82Google Scholar
  2. 2.
    Amadou A, Hainaut P, Romieu I (2013) Role of obesity in the risk of breast cancer: lessons from anthropometry. J Oncol 2013:906495. doi: 10.1155/2013/906495 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Toth MJ, Tchernof A, Sites CK, Poehlman ET (2000) Menopause-related changes in body fat distribution. Ann N Y Acad Sci 904:502–506PubMedCrossRefGoogle Scholar
  4. 4.
    Phillips LK, Prins JB (2008) The link between abdominal obesity and the metabolic syndrome. Curr Hypertens Rep 10(2):156–164PubMedCrossRefGoogle Scholar
  5. 5.
    Huffman DM, Barzilai N (2009) Role of visceral adipose tissue in aging. Biochim Biophys Acta. doi: 10.1016/j.bbagen.2009.01.008 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Rankinen T, Kim SY, Perusse L, Despres JP, Bouchard C (1999) The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. Int J Obes Relat Metab Disord 23(8):801–809PubMedCrossRefGoogle Scholar
  7. 7.
    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591. doi: 10.1038/nrc1408 PubMedCrossRefGoogle Scholar
  8. 8.
    Kaaks R, Van Noord PA, Den Tonkelaar I, Peeters PH, Riboli E, Grobbee DE (1998) Breast-cancer incidence in relation to height, weight and body-fat distribution in the Dutch “DOM” cohort. Int J Cancer 76(5):647–651. doi: 10.1002/(SICI)1097-0215(19980529)76:5<647:AID-IJC6>3.0.CO;2-Q PubMedCrossRefGoogle Scholar
  9. 9.
    Krebs EE, Taylor BC, Cauley JA, Stone KL, Bowman PJ, Ensrud KE (2006) Measures of adiposity and risk of breast cancer in older postmenopausal women. J Am Geriatr Soc 54(1):63–69. doi: 10.1111/j.1532-5415.2005.00541.x PubMedCrossRefGoogle Scholar
  10. 10.
    Morimoto LM, White E, Chen Z, Chlebowski RT, Hays J, Kuller L, Lopez AM, Manson J, Margolis KL, Muti PC, Stefanick ML, McTiernan A (2002) Obesity, body size, and risk of postmenopausal breast cancer: the Women’s Health Initiative (United States). Cancer Causes Control 13(8):741–751PubMedCrossRefGoogle Scholar
  11. 11.
    Macinnis RJ, English DR, Gertig DM, Hopper JL, Giles GG (2004) Body size and composition and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 13(12):2117–2125PubMedGoogle Scholar
  12. 12.
    Lahmann PH, Hoffmann K, Allen N, van Gils CH, Khaw KT, Tehard B, Berrino F, Tjonneland A, Bigaard J, Olsen A, Overvad K, Clavel-Chapelon F, Nagel G, Boeing H, Trichopoulos D, Economou G, Bellos G, Palli D, Tumino R, Panico S, Sacerdote C, Krogh V, Peeters PH, Bueno-de-Mesquita HB, Lund E, Ardanaz E, Amiano P, Pera G, Quiros JR, Martinez C, Tormo MJ, Wirfalt E, Berglund G, Hallmans G, Key TJ, Reeves G, Bingham S, Norat T, Biessy C, Kaaks R, Riboli E (2004) Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer And Nutrition (EPIC). Int J Cancer 111(5):762–771. doi: 10.1002/ijc.20315 PubMedCrossRefGoogle Scholar
  13. 13.
    Huang Z, Willett WC, Colditz GA, Hunter DJ, Manson JE, Rosner B, Speizer FE, Hankinson SE (1999) Waist circumference, waist: hip ratio, and risk of breast cancer in the Nurses’ Health Study. Am J Epidemiol 150(12):1316–1324PubMedCrossRefGoogle Scholar
  14. 14.
    Folsom AR, Kaye SA, Prineas RJ, Potter JD, Gapstur SM, Wallace RB (1990) Increased incidence of carcinoma of the breast associated with abdominal adiposity in postmenopausal women. Am J Epidemiol 131(5):794–803PubMedGoogle Scholar
  15. 15.
    Sonnenschein E, Toniolo P, Terry MB, Bruning PF, Kato I, Koenig KL, Shore RE (1999) Body fat distribution and obesity in pre- and postmenopausal breast cancer. Int J Epidemiol 28(6):1026–1031PubMedCrossRefGoogle Scholar
  16. 16.
    Canchola AJ, Anton-Culver H, Bernstein L, Clarke CA, Henderson K, Ma H, Ursin G, Horn-Ross PL (2012) Body size and the risk of postmenopausal breast cancer subtypes in the California Teachers Study cohort. Cancer Causes Control. doi: 10.1007/s10552-012-9897-x PubMedCentralPubMedGoogle Scholar
  17. 17.
    Hu F (2008) Obesity Epidemiology. Oxford University Press, New YorkCrossRefGoogle Scholar
  18. 18.
    Calle EE, Rodriguez C, Jacobs EJ, Almon ML, Chao A, McCullough ML, Feigelson HS, Thun MJ (2002) The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer 94(9):2490–2501. doi: 10.1002/cncr.101970 PubMedCrossRefGoogle Scholar
  19. 19.
    World Health Organization (1994) World Health Organization International classification of diseases tenth revision. In: Manual of the international statistical classification of disease, injuries, and cases of death, 10th rev. edn. WHO, GenevaGoogle Scholar
  20. 20.
    Lear SA, James PT, Ko GT, Kumanyika S (2010) Appropriateness of waist circumference and waist-to-hip ratio cutoffs for different ethnic groups. Eur J Clin Nutr 64(1):42–61. doi: 10.1038/ejcn.2009.70 PubMedCrossRefGoogle Scholar
  21. 21.
    Xue X, Kim MY, Gaudet MM, Park Y, Heo M, Hollenbeck AR, Strickler HD, Gunter MJ (2013) A comparison of the polytomous logistic regression and joint cox proportional hazards models for evaluating multiple disease subtypes in prospective cohort studies. Cancer Epidemiol Biomarkers Prev 22(2):275–285. doi: 10.1158/1055-9965.EPI-12-1050 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    World Cancer Research Fund/American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. AICR, Washington, DCGoogle Scholar
  23. 23.
    Palmer JR, Adams-Campbell LL, Boggs DA, Wise LA, Rosenberg L (2007) A prospective study of body size and breast cancer in black women. Cancer Epidemiol Biomarkers Prev 16(9):1795–1802. doi: 10.1158/1055-9965.EPI-07-0336 PubMedCrossRefGoogle Scholar
  24. 24.
    Sellers TA, Davis J, Cerhan JR, Vierkant RA, Olson JE, Pankratz VS, Potter JD, Folsom AR (2002) Interaction of waist/hip ratio and family history on the risk of hormone receptor-defined breast cancer in a prospective study of postmenopausal women. Am J Epidemiol 155(3):225–233PubMedCrossRefGoogle Scholar
  25. 25.
    Rohan TE, Heo M, Choi L, Datta M, Freudenheim JL, Kamensky V, Ochs-Balcom HM, Qi L, Thomson CA, Vitolins MZ, Wassertheil-Smoller S, Kabat GC (2013) Body fat and breast cancer risk in postmenopausal women: a longitudinal study. J Cancer Epidemiol 2013:754815. doi: 10.1155/2013/754815 PubMedCentralPubMedGoogle Scholar
  26. 26.
    Suzuki R, Orsini N, Saji S, Key TJ, Wolk A (2009) Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—a meta-analysis. Int J Cancer 124(3):698–712. doi: 10.1002/ijc.23943 PubMedCrossRefGoogle Scholar
  27. 27.
    Ritte R, Lukanova A, Berrino F, Dossus L, Tjonneland A, Olsen A, Overvad TF, Overvad K, Clavel-Chapelon F, Fournier A, Fagherazzi G, Rohrmann S, Teucher B, Boeing H, Aleksandrova K, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Sieri S, Panico S, Tumino R, Vineis P, Quiros JR, Buckland G, Sanchez MJ, Amiano P, Chirlaque MD, Ardanaz E, Sund M, Lenner P, Bueno-de-Mesquita B, van Gils CH, Peeters PH, Krum-Hansen S, Gram IT, Lund E, Khaw KT, Wareham N, Allen NE, Key TJ, Romieu I, Rinaldi S, Siddiq A, Cox D, Riboli E, Kaaks R (2012) Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study. Breast Cancer Res 14(3):R76. doi: 10.1186/bcr3186 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hvidtfeldt UA, Gunter MJ, Lange T, Chlebowski RT, Lane D, Farhat GN, Freiberg MS, Keiding N, Lee JS, Prentice R, Tjonneland A, Vitolins MZ, Wassertheil-Smoller S, Strickler HD, Rod NH (2012) Quantifying mediating effects of endogenous estrogen and insulin in the relation between obesity, alcohol consumption, and breast cancer. Cancer Epidemiol Biomarkers Prev 21(7):1203–1212. doi: 10.1158/1055-9965.EPI-12-0310 PubMedCrossRefGoogle Scholar
  29. 29.
    Cust AE, Stocks T, Lukanova A, Lundin E, Hallmans G, Kaaks R, Jonsson H, Stattin P (2008) The influence of overweight and insulin resistance on breast cancer risk and tumour stage at diagnosis: a prospective study. Breast Cancer Res Treat. doi: 10.1007/s10549-008-9958-8 PubMedGoogle Scholar
  30. 30.
    Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros CS, Hankinson SE (2007) Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab 92(4):1510–1516. doi: 10.1210/jc.2006-1975 PubMedCrossRefGoogle Scholar
  31. 31.
    Nickell WB, Skelton J (2005) Breast fat and fallacies: more than 100 years of anatomical fantasy. J Hum Lact 21(2):126–130. doi: 10.1177/0890334405276471 PubMedCrossRefGoogle Scholar
  32. 32.
    Janiszewski PM, Saunders TJ, Ross R (2010) Breast volume is an independent predictor of visceral and ectopic fat in premenopausal women. Obesity (Silver Spring) 18(6):1183–1187. doi: 10.1038/oby.2009.336 CrossRefGoogle Scholar
  33. 33.
    Schautz B, Later W, Heller M, Muller MJ, Bosy-Westphal A (2011) Associations between breast adipose tissue, body fat distribution and cardio metabolic risk in women: cross-sectional data and weight-loss intervention. Eur J Clin Nutr 65(7):784–790. doi: 10.1038/ejcn.2011.35 PubMedCrossRefGoogle Scholar
  34. 34.
    Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 4(3):329–346. doi: 10.1158/1940-6207.CAPR-10-0381 CrossRefGoogle Scholar
  35. 35.
    Morris PG, Hudis CA, Giri D, Morrow M, Falcone DJ, Zhou XK, Du B, Brogi E, Crawford CB, Kopelovich L, Subbaramaiah K, Dannenberg AJ (2011) Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res (Phila) 4(7):1021–1029. doi: 10.1158/1940-6207.CAPR-11-0110 CrossRefGoogle Scholar
  36. 36.
    Sun X, Casbas-Hernandez P, Bigelow C, Makowski L, Joseph Jerry D, Smith Schneider S, Troester MA (2012) Normal breast tissue of obese women is enriched for macrophage markers and macrophage-associated gene expression. Breast Cancer Res Treat 131(3):1003–1012. doi: 10.1007/s10549-011-1789-3 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Rose DP, Komninou D, Stephenson GD (2004) Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 5(3):153–165. doi: 10.1111/j.1467-789X.2004.00142.x PubMedCrossRefGoogle Scholar
  38. 38.
    Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, Pankratz VS, Degnim AC, Vachon CM, Reynolds CA, Thompson RA, Melton LJ 3rd, Goode EL, Visscher DW (2006) Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 98(22):1600–1607. doi: 10.1093/jnci/djj439 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mia M. Gaudet
    • 1
    Email author
  • Brian D. Carter
    • 1
  • Alpa V. Patel
    • 1
  • Lauren R. Teras
    • 1
  • Eric J. Jacobs
    • 1
  • Susan M. Gapstur
    • 1
  1. 1.Epidemiology Research ProgramAmerican Cancer SocietyAtlantaUSA

Personalised recommendations