Cancer Causes & Control

, Volume 25, Issue 3, pp 339–351 | Cite as

Relations of omega-3 and omega-6 intake with mammographic breast density

  • Caroline DiorioEmail author
  • Isabelle Dumas
Original paper



Omega-3 (n-3) and n-6 fatty acids (FA) intake could influence the occurrence of certain diseases such as breast cancer but little is known about their relation to mammographic density (MD). The purpose of this study is to examine the association of the intake of n-3 FA and n-6 FA with MD among 777 premenopausal and 783 postmenopausal women.


In this cross-sectional study, FA intake was assessed with a self-administered food-frequency questionnaire and MD was measured using a computer-assisted method. Multivariate analyses were performed by using generalized linear models to evaluate the associations of quartiles of FA intake with MD.


For increasing quartiles of total long-chain n-3 FA intake (< 0.11, 0.11–0.20, 0.21–0.32, and ≥ 0.33 g/day), adjusted mean MD was 29, 29, 27, and 25 %, respectively (P trend = 0.005). This association remained significant among postmenopausal (P trend = 0.006) but not among premenopausal (P trend = 0.21) women. No significant association was found between n-6 FA intake and MD. However, for increasing quartiles of the n-6 FA/long-chain n-3 FA ratio intake (< 31.75, 31.75–52.28, 52.29–94.28, and ≥ 94.29), adjusted mean MD was 26, 27, 29, and 29 %, respectively (P trend = 0.008).


Higher intake of long-chain n-3 FA was associated with lower MD, suggesting that increased long-chain n-3 FA intake could be a strategy for breast cancer prevention.


Omega-3 Omega-6 Polyunsaturated fatty acid Breast density Breast cancer 



This study was supported by a grant from the Canadian Breast Cancer Research Alliance. CD is a Junior Investigator of the Canadian Cancer Society (2011-700657). We thank Jacques Brisson and Sylvie Bérubé for their valuable contributions to the initial study. We are grateful to the Clinique radiologique Audet and Clinique radiologique Saint-Pascal for their excellent collaboration.

Conflict of interest

None of the authors had a personal or financial conflict of interest.

Supplementary material

10552_2013_335_MOESM1_ESM.docx (53 kb)
Supplementary material 1 (DOCX 53 kb)


  1. 1.
    Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379PubMedCrossRefGoogle Scholar
  2. 2.
    Fay MP, Freedman LS, Clifford CK, Midthune DN (1997) Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res 57(18):3979–3988PubMedGoogle Scholar
  3. 3.
    Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54(3):438–463PubMedGoogle Scholar
  4. 4.
    Bougnoux P, Maillard V, Chajes V (2005) Omega-6/omega-3 polyunsaturated fatty acids ratio and breast cancer. World Rev Nutr Diet 94:158–165PubMedCrossRefGoogle Scholar
  5. 5.
    Ge Y, Wang X, Chen Z, Landman N, Lo EH, Kang JX (2002) Gene transfer of the caenorhabditis elegans n-3 fatty acid desaturase inhibits neuronal apoptosis. J Neurochem 82(6):1360–1366PubMedCrossRefGoogle Scholar
  6. 6.
    Calder PC, Grimble RF (2002) Polyunsaturated fatty acids, inflammation and immunity. Eur J Clin Nutr 56(Suppl 3):S14–S19PubMedCrossRefGoogle Scholar
  7. 7.
    Calder PC, Yaqoob P, Thies F, Wallace FA, Miles EA (2002) Fatty acids and lymphocyte functions. Br J Nutr 87(Suppl 1):S31–S48PubMedCrossRefGoogle Scholar
  8. 8.
    Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83(3):217–244PubMedCrossRefGoogle Scholar
  9. 9.
    Leahy KM, Ornberg RL, Wang Y, Zweifel BS, Koki AT, Masferrer JL (2002) Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res 62(3):625–631PubMedGoogle Scholar
  10. 10.
    Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79(6):935–945PubMedGoogle Scholar
  11. 11.
    Noble LS, Takayama K, Zeitoun KM, Putman JM, Johns DA, Hinshelwood MM, Agarwal VR, Zhao Y, Carr BR, Bulun SE (1997) Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab 82(2):600–606PubMedGoogle Scholar
  12. 12.
    Sasaki S, Horacsek M, Kesteloot H (1993) An ecological study of the relationship between dietary fat intake and breast cancer mortality. Prev Med 22(2):187–202PubMedCrossRefGoogle Scholar
  13. 13.
    Lund E, Bonaa KH (1993) Reduced breast cancer mortality among fishermen’s wives in Norway. Cancer Causes Control 4(3):283–287PubMedGoogle Scholar
  14. 14.
    Kaizer L, Boyd NF, Kriukov V, Tritchler D (1989) Fish consumption and breast cancer risk: an ecological study. Nutr Cancer 12(1):61–68PubMedCrossRefGoogle Scholar
  15. 15.
    Smith-Warner SA, Spiegelman D, Adami HO, Beeson WL, van den Brandt PA, Folsom AR, Fraser GE, Freudenheim JL, Goldbohm RA, Graham S, Kushi LH, Miller AB, Rohan TE, Speizer FE, Toniolo P, Willett WC, Wolk A, Zeleniuch-Jacquotte A, Hunter DJ (2001) Types of dietary fat and breast cancer: a pooled analysis of cohort studies. Int J Cancer 92(5):767–774PubMedCrossRefGoogle Scholar
  16. 16.
    Thiebaut AC, Chajes V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G, Berrino F, Riboli E, Benichou J, Clavel-Chapelon F (2009) Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 124(4):924–931PubMedCrossRefGoogle Scholar
  17. 17.
    Wirfalt E, Mattisson I, Gullberg B, Johansson U, Olsson H, Berglund G (2002) Postmenopausal breast cancer is associated with high intakes of omega6 fatty acids (Sweden). Cancer Causes Control 13(10):883–893PubMedCrossRefGoogle Scholar
  18. 18.
    Nkondjock A, Shatenstein B, Ghadirian P (2003) A case-control study of breast cancer and dietary intake of individual fatty acids and antioxidants in Montreal Canada. Breast 12(2):128–135PubMedCrossRefGoogle Scholar
  19. 19.
    Brasky TM, Lampe JW, Potter JD, Patterson RE, White E (2010) Specialty supplements and breast cancer risk in the vitamins and lifestyle (VITAL) cohort. Cancer Epidemiol Biomarkers Prev 19(7):1696–1708PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wakai K, Tamakoshi K, Date C, Fukui M, Suzuki S, Lin Y, Niwa Y, Nishio K, Yatsuya H, Kondo T, Tokudome S, Yamamoto A, Toyoshima H, Tamakoshi A (2005) Dietary intakes of fat and fatty acids and risk of breast cancer: a prospective study in Japan. Cancer Sci 96(9):590–599PubMedCrossRefGoogle Scholar
  21. 21.
    Kuriki K, Hirose K, Wakai K, Matsuo K, Ito H, Suzuki T, Hiraki A, Saito T, Iwata H, Tatematsu M, Tajima K (2007) Breast cancer risk and erythrocyte compositions of n-3 highly unsaturated fatty acids in Japanese. Int J Cancer 121(2):377–385PubMedCrossRefGoogle Scholar
  22. 22.
    Kim J, Lim SY, Shin A, Sung MK, Ro J, Kang HS, Lee KS, Kim SW, Lee ES (2009) Fatty fish and fish omega-3 fatty acid intakes decrease the breast cancer risk: a case-control study. BMC Cancer 9:216PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gago-Dominguez M, Yuan JM, Sun CL, Lee HP, Yu MC (2003) Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: the Singapore Chinese Health Study. Br J Cancer 89(9):1686–1692PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Goodstine SL, Zheng T, Holford TR, Ward BA, Carter D, Owens PH, Mayne ST (2003) Dietary (n-3)/(n-6) fatty acid ratio: possible relationship to premenopausal but not postmenopausal breast cancer risk in U.S. women. J Nutr 133(5):1409–1414PubMedGoogle Scholar
  25. 25.
    McCormack VA, Dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15(6):1159–1169PubMedCrossRefGoogle Scholar
  26. 26.
    Brisson J, Diorio C, Masse B (2003) Wolfe’s parenchymal pattern and percentage of the breast with mammographic densities: redundant or complementary classifications? Cancer Epidemiol Biomarkers Prev 12(8):728–732PubMedGoogle Scholar
  27. 27.
    Boyd NF, Jensen HM, Cooke G, Han HL, Lockwood GA, Miller AB (2000) Mammographic densities and the prevalence and incidence of histological types of benign breast disease. Reference pathologists of the Canadian National Breast Screening Study. Eur J Cancer Prev 9(1):15–24PubMedCrossRefGoogle Scholar
  28. 28.
    Vachon CM, Kushi LH, Cerhan JR, Kuni CC, Sellers TA (2000) Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev 9(2):151–160PubMedGoogle Scholar
  29. 29.
    Jakes RW, Duffy SW, Ng FC, Gao F, Ng EH, Seow A, Lee HP, Yu MC (2002) Mammographic parenchymal patterns and self-reported soy intake in Singapore Chinese women. Cancer Epidemiol Biomarkers Prev 11(7):608–613PubMedGoogle Scholar
  30. 30.
    Nagata C, Matsubara T, Fujita H, Nagao Y, Shibuya C, Kashiki Y, Shimizu H (2005) Associations of mammographic density with dietary factors in Japanese women. Cancer Epidemiol Biomarkers Prev 14(12):2877–2880PubMedCrossRefGoogle Scholar
  31. 31.
    Nordevang E, Azavedo E, Svane G, Nilsson B, Holm LE (1993) Dietary habits and mammographic patterns in patients with breast cancer. Breast Cancer Res Treat 26(3):207–215PubMedCrossRefGoogle Scholar
  32. 32.
    Masala G, Ambrogetti D, Assedi M, Giorgi D, Del Turco MR, Palli D (2006) Dietary and lifestyle determinants of mammographic breast density. A longitudinal study in a Mediterranean population. Int J Cancer 118(7):1782–1789PubMedCrossRefGoogle Scholar
  33. 33.
    Berube S, Diorio C, Masse B, Hebert-Croteau N, Byrne C, Cote G, Pollak M, Yaffe M, Brisson J (2005) Vitamin D and calcium intakes from food or supplements and mammographic breast density. Cancer Epidemiol Biomarkers Prev 14(7):1653–1659PubMedCrossRefGoogle Scholar
  34. 34.
    Diorio C, Pollak M, Byrne C, Masse B, Hebert-Croteau N, Yaffe M, Cote G, Berube S, Morin C, Brisson J (2005) Insulin-like growth factor-I, IGF-binding protein-3, and mammographic breast density. Cancer Epidemiol Biomarkers Prev 14(5):1065–1073PubMedCrossRefGoogle Scholar
  35. 35.
    London SJ, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Speizer FE (1989) Prospective study of relative weight, height, and risk of breast cancer. JAMA 262(20):2853–2858PubMedCrossRefGoogle Scholar
  36. 36.
    Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, Paffenbarger RS Jr (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25(1):71–80PubMedCrossRefGoogle Scholar
  37. 37.
    Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC (1994) Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 23(5):991–999PubMedCrossRefGoogle Scholar
  38. 38.
    Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87(9):670–675PubMedCrossRefGoogle Scholar
  39. 39.
    Byng JW, Boyd NF, Little L, Lockwood G, Fishell E, Jong RA, Yaffe MJ (1996) Symmetry of projection in the quantitative analysis of mammographic images. Eur J Cancer Prev 5(5):319–327PubMedCrossRefGoogle Scholar
  40. 40.
    Byng JW, Yaffe MJ, Lockwood GA, Little LE, Tritchler DL, Boyd NF (1997) Automated analysis of mammographic densities and breast carcinoma risk. Cancer 80(1):66–74PubMedCrossRefGoogle Scholar
  41. 41.
    Willett W (1998) Nutritional epidemiology, Second edition. Oxford University press, OxfordCrossRefGoogle Scholar
  42. 42.
    Cuzick J, Warwick J, Pinney E, Warren RM, Duffy SW (2004) Tamoxifen and breast density in women at increased risk of breast cancer. J Natl Cancer Inst 96(8):621–628PubMedCrossRefGoogle Scholar
  43. 43.
    Cuzick J, Forbes J, Edwards R, Baum M, Cawthorn S, Coates A, Hamed A, Howell A, Powles T (2002) First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 360(9336):817–824PubMedCrossRefGoogle Scholar
  44. 44.
    Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388PubMedCrossRefGoogle Scholar
  45. 45.
    Hudson AG, Reeves KW, Modugno F, Wilson JW, Evans RW, Vogel VG, Gierach GL, Simpson J, Weissfeld JL (2013) Erythrocyte omega-6 and omega-3 fatty acids and mammographic breast density. Nutr Cancer 65(3):410–416PubMedCrossRefGoogle Scholar
  46. 46.
    Dumas I, Diorio C (2010) Polymorphisms in genes involved in the estrogen pathway and mammographic density. BMC Cancer 10:636PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Hirose K, Takezaki T, Hamajima N, Miura S, Tajima K (2003) Dietary factors protective against breast cancer in Japanese premenopausal and postmenopausal women. Int J Cancer 107(2):276–282PubMedCrossRefGoogle Scholar
  48. 48.
    Braga C, La Vecchia C, Negri E, Franceschi S, Parpinel M (1997) Intake of selected foods and nutrients and breast cancer risk: an age- and menopause-specific analysis. Nutr Cancer 28(3):258–263PubMedCrossRefGoogle Scholar
  49. 49.
    Zhu ZR, Agren J, Mannisto S, Pietinen P, Eskelinen M, Syrjanen K, Uusitupa M (1995) Fatty acid composition of breast adipose tissue in breast cancer patients and in patients with benign breast disease. Nutr Cancer 24(2):151–160PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou J, Suzuki T, Kovacic A, Saito R, Miki Y, Ishida T, Moriya T, Simpson ER, Sasano H, Clyne CD (2005) Interactions between prostaglandin E(2), liver receptor homologue-1, and aromatase in breast cancer. Cancer Res 65(2):657–663PubMedGoogle Scholar
  51. 51.
    Richards JA, Brueggemeier RW (2003) Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes. J Clin Endocrinol Metab 88(6):2810–2816PubMedCrossRefGoogle Scholar
  52. 52.
    Marra CA, de Alaniz MJ, Brenner RR (1988) Effect of various steroids on the biosynthesis of arachidonic acid in isolated hepatocytes and HTC cells. Lipids 23(11):1053–1058PubMedCrossRefGoogle Scholar
  53. 53.
    Boyd NF, McGuire V, Fishell E, Kuriov V, Lockwood G, Tritchler D (1989) Plasma lipids in premenopausal women with mammographic dysplasia. Br J Cancer 59(5):766–771PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Brisson J, Verreault R, Morrison AS, Tennina S, Meyer F (1989) Diet, mammographic features of breast tissue, and breast cancer risk. Am J Epidemiol 130(1):14–24PubMedGoogle Scholar
  55. 55.
    Knight JA, Martin LJ, Greenberg CV, Lockwood GA, Byng JW, Yaffe MJ, Tritchler DL, Boyd NF (1999) Macronutrient intake and change in mammographic density at menopause: results from a randomized trial. Cancer Epidemiol Biomarkers Prev 8(2):123–128PubMedGoogle Scholar
  56. 56.
    Ursin G, Sun CL, Koh WP, Khoo KS, Gao F, Wu AH, Yu MC (2006) Associations between soy, diet, reproductive factors, and mammographic density in Singapore Chinese women. Nutr Cancer 56(2):128–135PubMedCrossRefGoogle Scholar
  57. 57.
    Murff HJ, Shu XO, Li H, Yang G, Wu X, Cai H, Wen W, Gao YT, Zheng W (2011) Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study. Int J Cancer 128(6):1434–1441PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Lokate M, Peeters PH, Peelen LM, Haars G, Veldhuis WB, van Gils CH (2011) Mammographic density and breast cancer risk: the role of the fat surrounding the fibroglandular tissue. Breast Cancer Res 13(5):R103PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Pettersson A, Hankinson SE, Willett WC, Lagiou P, Trichopoulos D, Tamimi RM (2011) Nondense mammographic area and risk of breast cancer. Breast Cancer Res 13(5):R100PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Stone J, Ding J, Warren RM, Duffy SW, Hopper JL (2010) Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 12(6):R97PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Torres-Mejia G, De Stavola B, Allen DS, Perez-Gavilan JJ, Ferreira JM, Fentiman IS, Dos Santos Silva I (2005) Mammographic features and subsequent risk of breast cancer: a comparison of qualitative and quantitative evaluations in the Guernsey prospective studies. Cancer Epidemiol Biomarkers Prev 14(5):1052–1059PubMedCrossRefGoogle Scholar
  62. 62.
    Baglietto L, Krishnan K, Stone J, Apicella C, Southey MC, English DR, Hopper JL, Giles GG (2013) Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer. Am J Epidemiol. doi: 10.1093/aje/kwt260
  63. 63.
    Diorio C, Berube S, Byrne C, Masse B, Hebert-Croteau N, Yaffe M, Cote G, Pollak M, Brisson J (2006) Influence of insulin-like growth factors on the strength of the relation of vitamin D and calcium intakes to mammographic breast density. Cancer Res 66(1):588–597PubMedCrossRefGoogle Scholar
  64. 64.
    Bagga D, Capone S, Wang HJ, Heber D, Lill M, Chap L, Glaspy JA (1997) Dietary modulation of omega-3/omega-6 polyunsaturated fatty acid ratios in patients with breast cancer. J Natl Cancer Inst 89(15):1123–1131PubMedCrossRefGoogle Scholar
  65. 65.
    London SJ, Sacks FM, Stampfer MJ, Henderson IC, Maclure M, Tomita A, Wood WC, Remine S, Robert NJ, Dmochowski JR et al (1993) Fatty acid composition of the subcutaneous adipose tissue and risk of proliferative benign breast disease and breast cancer. J Natl Cancer Inst 85(10):785–793PubMedCrossRefGoogle Scholar
  66. 66.
    Prentice RL (2003) Dietary assessment and the reliability of nutritional epidemiology reports. Lancet 362(9379):182–183PubMedCrossRefGoogle Scholar
  67. 67.
    Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M (1997) A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA 94(17):9372–9377PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Axe oncologieCentre de recherche du CHU de QuébecQuebec CityCanada
  2. 2.Centre des maladies du sein Deschênes-FabiaHôpital du Saint-SacrementQuebec CityCanada
  3. 3.Département de médecine sociale et préventive, Centre de recherche sur le cancerUniversité LavalQuebec CityCanada

Personalised recommendations