Cancer Causes & Control

, Volume 23, Issue 8, pp 1265–1277 | Cite as

Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: the ESCALE study (SFCE)

  • Alicia AmigouEmail author
  • Jérémie Rudant
  • Laurent Orsi
  • Stéphanie Goujon-Bellec
  • Guy Leverger
  • André Baruchel
  • Yves Bertrand
  • Brigitte Nelken
  • Geneviève Plat
  • Gérard Michel
  • Stéphanie Haouy
  • Pascal Chastagner
  • Stéphane Ducassou
  • Xavier Rialland
  • Denis Hémon
  • Jacqueline Clavel
Original Paper



Fetal folate deficiency may increase the risk of subsequent childhood acute leukemia (AL), since folates are required for DNA methylation, synthesis, and repair, but the literature remains scarce. This study tested the hypothesis that maternal folic acid supplementation before or during pregnancy reduces AL risk, accounting for the SNPs rs1801133 (C677T) and rs1801131 (A1298C) in MTHFR and rs1801394 (A66G) and rs1532268 (C524T) in MTRR, assumed to modify folate metabolism.


The nationwide registry-based case–control study, ESCALE, carried out in 2003–2004, included 764 AL cases and 1,681 controls frequency matched with the cases on age and gender. Information on folic acid supplementation was obtained by standardized telephone interview. The genotypes were obtained using high-throughput platforms and imputation for untyped polymorphisms. Odds ratios (OR) were estimated using unconditional regression models adjusted for potential confounders.


AL was significantly inversely associated with maternal folic acid supplementation before and during pregnancy (OR = 0.4; 95 % confidence interval: [0.3–0.6]). MTHFR and MTRR genetic polymorphisms were not associated with AL. However, AL was positively associated with homozygosity for any of the MTHFR polymorphisms and carriership of both MTRR variant alleles (OR = 1.6 [0.9–3.1]). No interaction was observed between MTHFR, MTRR, and maternal folate supplementation.


The study findings support the hypothesis that maternal folic acid supplementation may reduce the risk of childhood AL. The findings also suggest that the genotype homozygous for any of the MTHFR variants and carrying both MTRR variants could be a risk factor for AL.


Childhood leukemia Folic acid Metabolism MTHFR MTRR Gene–environment interaction 



The authors are grateful to Claire Mulot, who was in charge of the biological collection at the Biological Resource Center of Saints-Pères, INSERM U775; the CEPH and the Centre National du Génotypage, which genotyped the cases; and IntegraGen, which genotyped the controls. The authors would also like to express their gratitude to Marie-Hélène Da Silva, Christophe Steffen, and Florence Menegaux (INSERM U1018, Environmental Epidemiology of Cancer), who contributed to the recruitment of the cases; Aurélie Guyot-Goubin and the staff of the French National Registry of Childhood Blood Malignancies, who contributed to case detection and verification; Sabine Mélèze and Marie-Anne Noel (Institut CSA), who coordinated the selection of the controls and the interviews; and Catherine Tricoche (Callson) and the team of interviewers, who interviewed the cases and controls.

The authors would also like to thank all of the Société Française de lutte contre les Cancers de l’Enfant et de l’Adolescent (SFCE) principal investigators: André Baruchel (Hôpital Saint-Louis/Hôpital Robert Debré, Paris), Claire Berger (Centre Hospitalier Universitaire, Saint-Etienne), Christophe Bergeron (Centre Léon Bérard, Lyon), Jean-Louis Bernard (Hôpital La Timone, Marseille), Yves Bertrand (Hôpital Debrousse, Lyon), Pierre Bordigoni (Centre Hospitalier Universitaire, Nancy), Patrick Boutard (Centre Hospitalier Régional Universitaire, Caen), Gérard Couillault (Hôpital d’Enfants, Dijon), Christophe Piguet (Centre Hospitalier Régional Universitaire, Limoges), Anne-Sophie Defachelles (Centre Oscar Lambret, Lille), François Demeocq (Hôpital Hôtel-Dieu, Clermont-Ferrand), Alain Fischer (Hôpital des Enfants Malades, Paris), Virginie Gandemer (Centre Hospitalier Universitaire—Hôpital Sud, Rennes), Dominique Valteau-Couanet (Institut Gustave Roussy, Villejuif), Jean-Pierre Lamagnere (Centre Gatien de Clocheville, Tours), Françoise Lapierre (Centre Hospitalier Universitaire Jean Bernard, Poitiers), Guy Leverger (Hôpital Armand-Trousseau, Paris), Patrick Lutz (Hôpital de Hautepierre, Strasbourg), Geneviève Margueritte (Hôpital Arnaud de Villeneuve, Montpellier), Françoise Mechinaud (Hôpital Mère et Enfants, Nantes), Gérard Michel (Hôpital La Timone, Marseille), Frédéric Millot (Centre Hospitalier Universitaire Jean Bernard, Poitiers), Martine Münzer (American Memorial Hospital, Reims), Brigitte Nelken (Hôpital Jeanne de Flandre, Lille), Hélène Pacquement (Institut Curie, Paris), Brigitte Pautard (Centre Hospitalier Universitaire, Amiens), Stéphane Ducassou (Hôpital Pellegrin Tripode, Bordeaux), Alain Pierre-Kahn (Hôpital Enfants Malades, Paris), Emmanuel Plouvier (Centre Hospitalier Régional, Besançon), Xavier Rialland (Centre Hospitalier Universitaire, Angers), Alain Robert (Hôpital des Enfants, Toulouse), Hervé Rubie (Hôpital des Enfants, Toulouse), Stéphanie Haouy (Hôpital Arnaud de Villeneuve, Montpellier), Christine Soler (Fondation Lenval, Nice), and Jean-Pierre Vannier (Hôpital Charles Nicolle, Rouen).

This work was supported by grants from INSERM, the Fondation de France, the Association pour la Recherche sur le Cancer (ARC), the Agence Française de Sécurité Sanitaire des Produits de Santé (AFSSAPS), the Agence Française de Sécurité Sanitaire de l’Environnement et du Travail (AFSSET), the association Cent pour sang la vie, the Institut National du Cancer (INCa), the Agence Nationale de la Recherche (ANR), and Cancéropôle Ile de France.

Conflict of interest

No potential conflicts of interest were disclosed.

Supplementary material

10552_2012_4_MOESM1_ESM.doc (56 kb)
Supplementary material 1 (DOC 56 kb)


  1. 1.
    Clavel J, Goubin A, Auclerc MF et al (2004) Incidence of childhood leukaemia and non-Hodgkin’s lymphoma in France: National Registry of Childhood Leukaemia and Lymphoma, 1990–1999. Eur J Cancer Prev 13:97–103PubMedCrossRefGoogle Scholar
  2. 2.
    Lacour B, Guyot-Goubin A, Guissou S, Bellec S, Desandes E, Clavel J (2010) Incidence of childhood cancer in France: National Children Cancer Registries, 2000–2004. Eur J Cancer Prev 19:173–181PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson LM (2006) Environmental genotoxicants/carcinogens and childhood cancer: bridgeable gaps in scientific knowledge. Mutat Res-Genet Toxicol Environ Mutagen 608:136–156CrossRefGoogle Scholar
  4. 4.
    Buffler PA, Kwan ML, Reynolds P, Urayama KY (2005) Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Invest 23:60–75PubMedCrossRefGoogle Scholar
  5. 5.
    McNally RJ, Parker L (2006) Environmental factors and childhood acute leukemias and lymphomas. Leuk Lymphoma 47:583–598PubMedCrossRefGoogle Scholar
  6. 6.
    Dockerty JD, Herbison P, Skegg DC, Elwood M (2007) Vitamin and mineral supplements in pregnancy and the risk of childhood acute lymphoblastic leukaemia: a case-control study. BMC Public Health 7:136PubMedCrossRefGoogle Scholar
  7. 7.
    French AE, Grant R, Weitzman S et al (2003) Folic acid food fortification is associated with a decline in neuroblastoma. Clin Pharmacol Ther 74:288–294PubMedCrossRefGoogle Scholar
  8. 8.
    Grupp SG, Greenberg ML, Ray JG et al (2011) Pediatric cancer rates after universal folic acid flour fortification in Ontario. J Clin Pharmacol 51:60–65PubMedCrossRefGoogle Scholar
  9. 9.
    Milne E, Royle JA, Miller M et al (2010) Maternal folate and other vitamin supplementation during pregnancy and risk of acute lymphoblastic leukemia in the offspring. Int J Cancer 126:2690–2699PubMedGoogle Scholar
  10. 10.
    Schuz J, Weihkopf T, Kaatsch P (2007) Medication use during pregnancy and the risk of childhood cancer in the offspring. Eur J Pediatr 166:433–441PubMedCrossRefGoogle Scholar
  11. 11.
    Shaw AK, Infante-Rivard C, Morrison HI (2004) Use of medication during pregnancy and risk of childhood leukemia (Canada). Cancer Causes Control 15:931–937PubMedCrossRefGoogle Scholar
  12. 12.
    Thompson JR, Gerald PF, Willoughby ML, Armstrong BK (2001) Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet 358:1935–1940PubMedCrossRefGoogle Scholar
  13. 13.
    Alcasabas P, Ravindranath Y, Goyette G et al (2008) 5, 10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and the risk of acute lymphoblastic leukemia (ALL) in Filipino children. Pediatr Blood Cancer 51:178–182PubMedCrossRefGoogle Scholar
  14. 14.
    Balta G, Yuksek N, Ozyurek E et al (2003) Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 73:154–160PubMedCrossRefGoogle Scholar
  15. 15.
    Chan JY, Ugrasena DG, Lum DW, Lu Y, Yeoh AE (2010) Xenobiotic and folate pathway gene polymorphisms and risk of childhood acute lymphoblastic leukaemia in Javanese children. Hematol Oncol 29:116–123Google Scholar
  16. 16.
    Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F, Fidani L, Koliouskas D, Mirtsou V (2006) Methylenetetrahydrofolate reductase C677T polymorphism: Association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in Greek patients. Pediatr Blood Cancer 47:147–151PubMedCrossRefGoogle Scholar
  17. 17.
    de Jonge R, Tissing WJE, Hooijberg JH et al (2009) Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood 113:2284–2289PubMedCrossRefGoogle Scholar
  18. 18.
    Gast A, Bermejo JL, Flohr T et al (2007) Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia 21:320–325PubMedCrossRefGoogle Scholar
  19. 19.
    Kamel AM, Moussa HS, Ebid GT, Bu RR, Bhatia KG (2007) Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia. J Egypt Natl Canc Inst 19:96–105PubMedGoogle Scholar
  20. 20.
    Kim NK, Chong SY, Jang MJ et al (2006) Association of the methylenetetrahydrofolate reductase polymorphism in Korean patients with childhood acute lymphoblastic leukemia. Anticancer Res 26:2879–2881PubMedGoogle Scholar
  21. 21.
    Krajinovic M, Lamothe S, Labuda D et al (2004) Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 103:252–257PubMedCrossRefGoogle Scholar
  22. 22.
    Lightfoot TJ, Johnston WT, Painter D et al (2010) Genetic variation in the folate metabolic pathway and risk of childhood leukemia. Blood 115:3923–3929PubMedCrossRefGoogle Scholar
  23. 23.
    Metayer C, Scelo G, Chokkalingam AP et al (2011) Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 22:1243–1258PubMedCrossRefGoogle Scholar
  24. 24.
    Oliveira E, Alves S, Quental S et al (2005) The MTHFR C677T and A1298C polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in Portugal. J Pediatr Hematol Oncol 27:425–429PubMedCrossRefGoogle Scholar
  25. 25.
    Petra BG, Janez J, Vita D (2007) Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma 48:786–792PubMedCrossRefGoogle Scholar
  26. 26.
    Reddy H, Jamil K (2006) Polymorphisms in the MTHFR gene and their possible association with susceptibility to childhood acute lymphocytic leukemia in an Indian population. Leuk Lymphoma 47:1333–1339PubMedCrossRefGoogle Scholar
  27. 27.
    Schnakenberg E, Mehles A, Cario G et al. (2005) Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. Bmc Med Genet 6:23Google Scholar
  28. 28.
    Thirumaran RK, Gast A, Flohr T et al. (2005) MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Blood 106:590–591; author reply 1–2Google Scholar
  29. 29.
    Tong N, Fang Y, Li J et al (2010) Methylenetetrahydrofolate reductase polymorphisms, serum methylenetetrahydrofolate reductase levels, and risk of childhood acute lymphoblastic leukemia in a Chinese population. Cancer Sci 101:782–786PubMedCrossRefGoogle Scholar
  30. 30.
    Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF (2001) Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA 98:4004–4009PubMedCrossRefGoogle Scholar
  31. 31.
    Yang L, Liu L, Wang JX et al (2011) Polymorphisms in folate-related genes: impact on risk of adult acute lymphoblastic leukemia rather than pediatric in Han Chinese. Leuk Lymphoma 52:1770–1776PubMedCrossRefGoogle Scholar
  32. 32.
    Yeoh AEJ, Lu Y, Chan JYS et al (2010) Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: results from the Malaysia–Singapore ALL Study Group. Leuk Res 34:276–283PubMedCrossRefGoogle Scholar
  33. 33.
    Zanrosso CW, Hatagima A, Emerenciano M et al (2006) The role of methylenetetrahydrofolate reductase in acute lymphoblastic leukemia in a Brazilian mixed population. Leuk Res 30:477–481PubMedCrossRefGoogle Scholar
  34. 34.
    Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113PubMedCrossRefGoogle Scholar
  35. 35.
    Weisberg I, Tran P, Christensen B, Sibani S, Rozen R (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172PubMedCrossRefGoogle Scholar
  36. 36.
    Weisberg IS, Jacques PF, Selhub J et al (2001) The 1298A–>C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156:409–415PubMedCrossRefGoogle Scholar
  37. 37.
    Han D, Shen C, Meng X et al (2012) Methionine synthase reductase A66G polymorphism contributes to tumor susceptibility: evidence from 35 case-control studies. Mol Biol Rep 39:805–816PubMedCrossRefGoogle Scholar
  38. 38.
    Brosselin P, Rudant J, Orsi L et al (2009) Acute childhood leukaemia and residence next to petrol stations and automotive repair garages: the ESCALE study (SFCE). Occup Environ Med 66:598–606PubMedCrossRefGoogle Scholar
  39. 39.
    Rudant J, Menegaux F, Leverger G et al (2008) Childhood hematopoietic malignancies and parental use of tobacco and alcohol: the ESCALE study (SFCE). Cancer Causes Control 19:1277–1290PubMedCrossRefGoogle Scholar
  40. 40.
    Rudant J, Menegaux F, Leverger G et al (2007) Household exposure to pesticides and risk of childhood hematopoietic malignancies: the ESCALE study (SFCE). Environ Health Perspect 115:1787–1793PubMedCrossRefGoogle Scholar
  41. 41.
    Rudant J, Orsi L, Menegaux F et al (2010) Childhood acute leukemia, early common infections, and allergy: the ESCALE study. Am J Epidemiol 172:1015–1027PubMedCrossRefGoogle Scholar
  42. 42.
    Amigou A, Sermage-Faure C, Orsi L et al (2011) Road traffic and childhood leukemia: the ESCALE study (SFCE). Environ Health Perspect 119:566–572PubMedCrossRefGoogle Scholar
  43. 43.
    Desandes E, Clavel J, Berger C et al (2004) Cancer incidence among children in France, 1990–1999. Pediatr Blood Cancer 43:749–757PubMedCrossRefGoogle Scholar
  44. 44.
    Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529Google Scholar
  45. 45.
    Blondel B, Norton J, du Mazaubrun C, Breart G (2001) Development of the main indicators of perinatal health in metropolitan France between 1995 and 1998. Results of the national perinatal survey. J Gynecol Obstet Biol Reprod (Paris) 30:552–564Google Scholar
  46. 46.
    Blondel B, Supernant K, Du Mazaubrun C, Breart G (2006) Trends in perinatal health in metropolitan France between 1995 and 2003: results from the National Perinatal Surveys. J Gynecol Obstet Biol Reprod (Paris) 35:373–387CrossRefGoogle Scholar
  47. 47.
    Infante-Rivard C, Jacques L (2000) Empirical study of parental recall bias. Am J Epidemiol 152:480–486PubMedCrossRefGoogle Scholar
  48. 48.
    Dehe S, Vodovar et al. (2000) Prévention primaire des anomalies de fermeture du tube neural par supplémentation périconceptionnelle en acide folique. Bulletin épidémiologique hebdomadaire 21:87–89Google Scholar
  49. 49.
    Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511PubMedCrossRefGoogle Scholar
  50. 50.
    Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franke A (2009) A comprehensive evaluation of SNP genotype imputation. Hum Genet 125:163–171PubMedCrossRefGoogle Scholar
  51. 51.
    Friso S, Choi SW, Girelli D et al (2002) A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Nat Acad Sci USA 99:5606–5611PubMedCrossRefGoogle Scholar
  52. 52.
    Olteanu H, Munson T, Banerjee R (2002) Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry 41:13378–13385PubMedCrossRefGoogle Scholar
  53. 53.
    Koppen IJ, Hermans FJ, Kaspers GJ (2010) Folate related gene polymorphisms and susceptibility to develop childhood acute lymphoblastic leukaemia. Br J Haematol 148:3–14PubMedCrossRefGoogle Scholar
  54. 54.
    Zintzaras E, Koufakis T, Ziakas PD, Rodopoulou P, Giannouli S, Voulgarelis M (2006) A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia. Eur J Epidemiol 21:501–510PubMedCrossRefGoogle Scholar
  55. 55.
    Pereira TV, Rudnicki M, Pereira AC, Pombo-De-Oliveira MS, Franco RF (2006) 5, 10-methylenetetrahydrofolate reductase polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15:1956–1963CrossRefGoogle Scholar
  56. 56.
    Vijayakrishnan J, Houlston RS (2010) Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 95:1405–1414PubMedCrossRefGoogle Scholar
  57. 57.
    Wang J, Zhan P, Chen B, Zhou R, Yang Y, Ouyang J (2010) MTHFR C677T polymorphisms and childhood acute lymphoblastic leukemia: a meta-analysis. Leuk Res 34:1596–1600PubMedCrossRefGoogle Scholar
  58. 58.
    Rozen R (1997) Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost 78:523–526PubMedGoogle Scholar
  59. 59.
    Blount BC, Mack MM, Wehr CM et al (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Nat Acad Sci USA 94:3290–3295PubMedCrossRefGoogle Scholar
  60. 60.
    Kim YI (2000) Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr Rev 58:205–209PubMedCrossRefGoogle Scholar
  61. 61.
    Milne E, de Klerk NH, van Bockxmeer F et al (2006) Is there a folate-related gene–environment interaction in the etiology of childhood acute lymphoblastic leukemia? Int J Cancer 119:229–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alicia Amigou
    • 1
    • 2
    Email author
  • Jérémie Rudant
    • 1
    • 2
    • 3
  • Laurent Orsi
    • 1
    • 2
  • Stéphanie Goujon-Bellec
    • 1
    • 2
    • 3
  • Guy Leverger
    • 4
    • 5
  • André Baruchel
    • 6
    • 7
  • Yves Bertrand
    • 8
  • Brigitte Nelken
    • 9
    • 10
  • Geneviève Plat
    • 11
  • Gérard Michel
    • 12
  • Stéphanie Haouy
    • 13
  • Pascal Chastagner
    • 14
  • Stéphane Ducassou
    • 15
  • Xavier Rialland
    • 16
    • 17
  • Denis Hémon
    • 1
    • 2
  • Jacqueline Clavel
    • 1
    • 2
    • 3
  1. 1.Environmental Epidemiology of CancerInserm, U1018, CESPVillejuifFrance
  2. 2.Registre National des Hémopathies malignes de l’EnfantUniversité Paris-Sud 11, UMRS 1018VillejuifFrance
  3. 3.RNHE, National Registry of Childhood Hematopoietic MalignanciesVillejuifFrance
  4. 4.AP-HPHôpital Armand TrousseauParisFrance
  5. 5.Université Paris 6 Pierre et Marie CurieParisFrance
  6. 6.AP-HPHôpital Robert DebréParisFrance
  7. 7.Université Paris 7ParisFrance
  8. 8.Institut d’Hémato-Oncologie PédiatriqueLyonFrance
  9. 9.Hôpital Jeanne de FlandreCHRULilleFrance
  10. 10.Université Lille Nord de FranceLilleFrance
  11. 11.Hôpital des EnfantsToulouseFrance
  12. 12.AP-HMHôpital la TimoneMarseilleFrance
  13. 13.Hôpital Arnaud de VilleneuveMontpellierFrance
  14. 14.CHU de NancyVandoeuvreFrance
  15. 15.Hôpital Pellegrin TripodeBordeauxFrance
  16. 16.Hôpital Mère-EnfantCHU-NantesNantesFrance
  17. 17.CHU d’AngersAngersFrance

Personalised recommendations