Cancer Causes & Control

, 22:965 | Cite as

Non-steroidal anti-inflammatory drugs (NSAIDs) and breast cancer risk: differences by molecular subtype

  • Theodore M. Brasky
  • Matthew R. Bonner
  • Kirsten B. Moysich
  • Christine B. Ambrosone
  • Jing Nie
  • Meng Hua Tao
  • Stephen B. Edge
  • Bhaskar V. S. Kallakury
  • Catalin Marian
  • David S. Goerlitz
  • Maurizio Trevisan
  • Peter G. Shields
  • Jo L. Freudenheim
Original paper

Abstract

Use of non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with reduced risk of breast cancer, though findings have been inconsistent. This inconsistency may result from differences in etiology for breast tumors of different subtypes. We examined the association between NSAID use and breast cancer characterized by molecular subtypes in a population-based case–control study in Western New York. Cases (n = 1,170) were women with incident, primary, histologically confirmed breast cancer. Controls (n = 2,115) were randomly selected from NY Department of Motor Vehicles records (<65 years) or Medicare rolls (≥65 years). Participants answered questions regarding their use of aspirin and ibuprofen in the year prior to interview and their use of aspirin throughout their adult life. Logistic regression models estimated odds ratios (OR) and 95% confidence intervals (95% CI). Recent and lifetime aspirin use was associated with reduced risk, with no differences by subtype. Recent use of ibuprofen was significantly associated with increased risk of ER+/PR+(OR 1.33, 95% CI: 1.09–1.62), HER2− (OR 1.27, 95% CI: 1.05–1.53), and p53− breast cancers (OR 1.28, 95% CI: 1.04–1.57), as well as luminal A or B breast cancers. These findings support the hypothesis of heterogeneous etiologies of breast cancer subtypes and that aspirin and ibuprofen vary in their effects.

Keywords

Aspirin Breast cancer HER-2 Hormone receptor Ibuprofen P53 Non-steroidal anti-inflammatory drugs 

Notes

Acknowledgments

This work was supported in part by grants DAMD-17-03-1-0446 and DAMD-17-96-1-6202 from the US Department of Defense, and R01-CA92040, P50-AA09802, R25-CA94880, and K05-CA154337 from the National Institutes of Health, National Cancer Institute.

Supplementary material

10552_2011_9769_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. 1.
    Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605–1621PubMedCrossRefGoogle Scholar
  2. 2.
    Coussens LM, Werb Z (2002) Inflammation and cancer [see comment]. Nature 420(6917):860–867PubMedCrossRefGoogle Scholar
  3. 3.
    Takkouche BR-MC, Etminan M (2008) Breast cancer and use of nonsteroidal anti-inflammatory drugs: a meta-analysis. J Natl Cancer Inst 100(20):1420–1423CrossRefGoogle Scholar
  4. 4.
    Khuder SA, Mutgi AB (2001) Breast cancer and NSAID use: a meta-analysis. Br J Cancer 84(9):1188–1192PubMedCrossRefGoogle Scholar
  5. 5.
    Davies G, Martin LA, Sacks N, Dowsett M (2002) Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann Oncol 13(5):669–678PubMedCrossRefGoogle Scholar
  6. 6.
    Davies GLS (2003) Cyclooxygenase-2 and chemoprevention of breast cancer. J Steroid Biochem Mol Biol 86(3–5):495–499PubMedCrossRefGoogle Scholar
  7. 7.
    Brueggemeier RW, Diaz-Cruz ES (2006) Relationship between aromatase and cyclooxygenases in breast cancer: potential for new therapeutic approaches. Minerva Endocrinol 31(1):13–26PubMedGoogle Scholar
  8. 8.
    Brueggemeier RW, Diaz-Cruz ES, Li P-K, Sugimoto Y, Lin YC, Shapiro CL (2005) Translational studies on aromatase, cyclooxygenases, and enzyme inhibitors in breast cancer. J Steroid Biochem Mol Biol 95(1–5):129–136PubMedCrossRefGoogle Scholar
  9. 9.
    Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16):9212–9217PubMedCrossRefGoogle Scholar
  10. 10.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  11. 11.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423PubMedCrossRefGoogle Scholar
  12. 12.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374PubMedCrossRefGoogle Scholar
  13. 13.
    Huang WY, Newman B, Millikan RC, Schell MJ, Hulka BS, Moorman PG (2000) Hormone-related factors and risk of breast cancer in relation to estrogen receptor and progesterone receptor status. Am J Epidemiol 151(7):703–714PubMedGoogle Scholar
  14. 14.
    Hussain SP, Hollstein MH, Harris CC (2000) p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment. Ann N Y Acad Sci 919:79–85PubMedCrossRefGoogle Scholar
  15. 15.
    Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Reproductive and hormonal risk factors for postmenopausal luminal, HER-2-overexpressing, and triple-negative breast cancer. Cancer 113(7):1521–1526PubMedCrossRefGoogle Scholar
  16. 16.
    Yang XR, Sherman ME, Rimm DL, Lissowska J, Brinton LA, Peplonska B et al (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16(3):439–443PubMedCrossRefGoogle Scholar
  17. 17.
    Gill J, Maskarinec G, Wilkens LR, Pike MC, Henderson BE, Kolonel LN (2007) Nonsteroidal Antiinflammatory Drugs and breast cancer risk: the multiethnic cohort. Am J Epidemiol 166(10):1150–1158PubMedCrossRefGoogle Scholar
  18. 18.
    Kirsh V, Kreiger N, Cotterchio M, Sloan M, Theis B (2007) Nonsteroidal antiinflammatory drug use and breast cancer risk: subgroup findings. Am J Epidemiol 166(6):709–716PubMedCrossRefGoogle Scholar
  19. 19.
    Marshall SF, Bernstein L, Anton-Culver H, Deapen D, Horn-Ross PL, Mohrenweiser H et al (2005) Nonsteroidal anti-inflammatory drug use and breast cancer risk by stage and hormone receptor status. J Natl Cancer Inst 97(11):805–812PubMedCrossRefGoogle Scholar
  20. 20.
    Ready A, Velicer, CM., McTiernan A, White E (2007) NSAID use and breast cancer risk in the VITAL cohort. Breast Cancer Res Treat. Published Online Aug 3, 2007Google Scholar
  21. 21.
    Terry MB, Gammon MD, Zhang FF, Tawfik H, Teitelbaum SL, Britton JA et al (2004) Association of frequency and duration of aspirin use and hormone receptor status with breast cancer risk [see comment]. JAMA 291(20):2433–2440PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang Y, Coogan PF, Palmer JR, Strom BL, Rosenberg L (2005) Use of nonsteroidal antiinflammatory drugs and risk of breast cancer: the case-control surveillance study revisited. Am J Epidemiol 162(2):165–170PubMedCrossRefGoogle Scholar
  23. 23.
    Gierach GL, Lacey JV Jr, Schatzkin A, Leitzmann MF, Richesson D, Hollenbeck AR et al (2008) Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Res 10(2):R38PubMedCrossRefGoogle Scholar
  24. 24.
    Gallicchio L, Visvanathan K, Burke A, Hoffman SC, Helzlsouer KJ (2007) Nonsteroidal anti-inflammatory drugs and the risk of developing breast cancer in a population-based prospective cohort study in Washington County, MD. Int J Cancer 121(1):211–215PubMedCrossRefGoogle Scholar
  25. 25.
    Eliassen AH, Chen WY, Spriegelman D, Willet WC, Hunter DJ, Hankinson SE (2009) Use of aspirin, other nonsteroidal anti-inflammatory drugs, and acetaminophen and risk of breast cancer among premenopausal women in the Nurses’ Health Study II. Arch Intern Med 169(2):115–121PubMedCrossRefGoogle Scholar
  26. 26.
    Cook NR, Lee IM, Gaziano JM, Gordon D, Ridker PM, Manson JE et al (2005) Low-dose aspirin in the primary prevention of cancer: the Women’s Health Study: a randomized controlled trial. J Am Med Assoc 294(1):47–55CrossRefGoogle Scholar
  27. 27.
    Bardia A, Olson JE, Vachon CM, Lazovich D, Vierkant RA, Wang AH et al (2010) Effect of aspirin and other NSAIDs on postmenopausal breast cancer incidence by hormone receptor status: results from a prospective cohort study. Breast Cancer Res Treat. 2010 Jul 29Google Scholar
  28. 28.
    Zhang SM, Cook NR, Manson JE, Lee IM, Buring JE (2008) Low-dose aspirin and breast cancer risk: results by tumour characteristics from a randomised trial. Br J Cancer 98(5):989–991PubMedCrossRefGoogle Scholar
  29. 29.
    Brasky TM, Bonner MR, Moysich KB, Ambrosone CB, Nie J, Tao MH et al (2010) Non-steroidal anti-inflammatory drug (NSAID) use and breast cancer risk in the Western New York Exposures and Breast Cancer (WEB) Study. Cancer Causes Control 21(9):1503–1512PubMedCrossRefGoogle Scholar
  30. 30.
    Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern Pathol 11(2):155–168Google Scholar
  31. 31.
    Tennis M, Krishnan S, Bonner M, Ambrosone CB, Vena JE, Moysich K et al (2006) p53 Mutation analysis in breast tumors by a DNA microarray method. Cancer Epidemiol Biomarkers Prev 15(1):80–85PubMedCrossRefGoogle Scholar
  32. 32.
    Figueroa JD, Terry MB, Gammon MD, Vaughan TL, Risch HA, Zhang F-F et al (2009) Cigarette smoking, body mass index, gastro-esophageal reflux disease, and non-steroidal anti-inflammatory drug use and risk of subtypes of esophageal and gastric cancers by P53 overexpression. Cancer Causes Control 20(3):361–368PubMedCrossRefGoogle Scholar
  33. 33.
    Freedman AN, Michalek AM, Weiss HA, Zhang ZF, Marshall JR, Mettlin CJ et al (1998) Aspirin use and p53 expression in colorectal cancer. Cancer Detect Prev 22(3):213–218PubMedCrossRefGoogle Scholar
  34. 34.
    Wacholder S, Hartge P, Lubin JH, Dosemeci M (1995) Non-differential misclassification and bias towards the null: a clarification [comment]. Occup Environ Med 52(8):557–558PubMedCrossRefGoogle Scholar
  35. 35.
    Singh-Ranger G, Mokbel K (2002) The role of cyclooxygenase-2 (COX-2) in breast cancer, and implications of COX-2 inhibition. Eur J Surg Oncol 28(7):729–737PubMedGoogle Scholar
  36. 36.
    Harris RE, Beebe-Donk J, Doss H, Burr-Doss D (2005) Aspirin, ibuprofen and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade. Oncol Rep 13:559–583PubMedGoogle Scholar
  37. 37.
    McTiernan A, Wu L, Barnabei VM, Chen C, Hendrix S, Modugno F et al (2008) Relation of demographic factors, menstrual history, reproduction and medication use to sex hormone levels in postmenopausal women. Breast Cancer Res Treat 108(2):217–231PubMedCrossRefGoogle Scholar
  38. 38.
    Hudson AG, Gierach GL, Modugno F, Simpson J, Wilson JW, Evans RW et al (2008) Nonsteroidal anti-inflammatory drug use and serum total estradiol in postmenopausal women. Cancer Epidemiol Biomarkers Prev 17(3):680–687PubMedCrossRefGoogle Scholar
  39. 39.
    Gates MA, Tworoger SS, Eliassen AH, Missmer SA, Hankinson SE (2010) Analgesic use and sex steroid hormone concentrations in postmenopausal women. Cancer Epidemiol Biomarkers Prev 19(4):1033–1041PubMedCrossRefGoogle Scholar
  40. 40.
    Singh-Ranger G, Kirkpatrick KL, Clark GM, Mokbel K (2003) Cyclo-oxygenase-2 (COX-2) mRNA expression correlates with progesterone receptor positivity in human breast cancer. Curr Med Res Opin 19(2):131–134PubMedCrossRefGoogle Scholar
  41. 41.
    Boland GP, Butt IS, Prasad R, Knox WF, Bundred NJ (2004) COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ. Br J Cancer 90(2):423–429PubMedCrossRefGoogle Scholar
  42. 42.
    McCarthy K, Bustin SA, Ogunkolade B, Khalaf S, Laban CA, McVittie CJ et al (2006) Cyclo-oxygenase-2 (COX-2) mRNA expression and hormone receptor status in breast cancer. Eur J Surg Oncol 32(7):707–709PubMedCrossRefGoogle Scholar
  43. 43.
    Ristimaki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62(3):632–635PubMedGoogle Scholar
  44. 44.
    Nakopoulou L, Mylona E, Papadaki I, Kapranou A, Giannopoulou I, Markaki S et al (2005) Overexpression of cyclooxygenase-2 is associated with a favorable prognostic phenotype in breast carcinoma. Pathobiology 72(5):241–249PubMedCrossRefGoogle Scholar
  45. 45.
    Subbaramaiah K, Howe LR, Port ER, Brogi E, Fishman J, Liu CH et al (2006) HER-2/neu status is a determinant of mammary aromatase activity in vivo: evidence for a cyclooxygenase-2-dependent mechanism. Cancer Res 66(10):5504–5511PubMedCrossRefGoogle Scholar
  46. 46.
    Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ (2002) Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 277(21):18649–18657PubMedCrossRefGoogle Scholar
  47. 47.
    Benoit V, Relic B, Leval Xd, Chariot A, Merville M-P, Bours V (2004) Regulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2. Oncogene 23(8):1631–1635PubMedCrossRefGoogle Scholar
  48. 48.
    Benoit V, de Moraes E, Dar NA, Taranchon E, Bours V, Hautefeuille A et al (2006) Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB. Oncogene 25(42):5708–5718PubMedCrossRefGoogle Scholar
  49. 49.
    Han JA, Kim J-I, Ongusaha PP, Hwang DH, Ballou LR, Mahale A et al (2002) P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 21(21):5635–5644PubMedCrossRefGoogle Scholar
  50. 50.
    Cho MH, Yoon JH, Jaegal YJ, Choi YD, Lee JS, Lee JH et al (2006) Expression of cyclooxygenase-2 in breast carcinogenesis and its relation to HER-2/neu and p53 protein expression in invasive ductal carcinoma. Breast 15(3):390–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Theodore M. Brasky
    • 1
    • 6
  • Matthew R. Bonner
    • 1
  • Kirsten B. Moysich
    • 2
  • Christine B. Ambrosone
    • 2
  • Jing Nie
    • 1
  • Meng Hua Tao
    • 1
  • Stephen B. Edge
    • 3
  • Bhaskar V. S. Kallakury
    • 4
  • Catalin Marian
    • 4
  • David S. Goerlitz
    • 4
  • Maurizio Trevisan
    • 5
  • Peter G. Shields
    • 4
  • Jo L. Freudenheim
    • 1
  1. 1.Department of Social and Preventive Medicine, School of Public Health and Health ProfessionsUniversity at BuffaloBuffaloUSA
  2. 2.Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloUSA
  3. 3.Department of Surgical OncologyRoswell Park Cancer InstituteBuffaloUSA
  4. 4.Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonUSA
  5. 5.Nevada System of Higher EducationLas VegasUSA
  6. 6.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations