Advertisement

Cancer Causes & Control

, Volume 21, Issue 11, pp 1961–1964 | Cite as

Is there any interaction between domestic radon exposure and air pollution from traffic in relation to childhood leukemia risk?

  • Elvira Vaclavik Bräuner
  • Claus E. Andersen
  • Helle P. Andersen
  • Peter Gravesen
  • Morten Lind
  • Kaare Ulbak
  • Ole Hertel
  • Joachim Schüz
  • Ole Raaschou-Nielsen
Brief report

Abstract

Background

In a recent population-based case–control study using 2,400 cases of childhood cancer, we found a statistically significant association between residential radon and acute lymphoblastic leukemia risk.

Hypothesis

Traffic exhaust in the air enhances the risk association between radon and childhood leukemia.

Methods

We included 985 cases of childhood leukemia and 1,969 control children. We used validated models to calculate residential radon and street NOx concentrations for each home. Conditional logistic regression analyses were used to analyze the effect of radon on childhood leukemia risk within different strata of air pollution and traffic density.

Results

The relative risk for childhood leukemia in association with a 103 Bq/m3-years increase in radon was 1.77 (1.11, 2.82) among those exposed to high levels of NOx and 1.23 (0.79, 1.91) for those exposed to low levels of NOx (p interaction, 0.17). Analyses for different morphological subtypes of leukemia and within different strata of traffic density showed a non-significant pattern of stronger associations between radon and childhood leukemia within strata of higher traffic density at the street address.

Interpretation

Air pollution from traffic may enhance the effect of radon on the risk of childhood leukemia. The observed tendency may also be attributed to chance.

Keywords

Air pollution Radon Interaction Case–control Childhood leukemia 

Notes

Financial support

Dr Bräuner was supported by a Research Grant from The Danish Medical Research Council.

References

  1. 1.
    Raaschou-Nielsen O (2008) Indoor radon and childhood leukaemia. Radiat Prot Dosimetry 132:175–181CrossRefPubMedGoogle Scholar
  2. 2.
    Evrard AS, Hemon D, Billon S et al (2005) Ecological association between indoor radon concentration and childhood leukaemia incidence in France, 1990–1998. Eur J Cancer Prev 14:147–157CrossRefPubMedGoogle Scholar
  3. 3.
    Raaschou-Nielsen O, Andersen CE, Andersen HP et al (2008) Domestic radon and childhood cancer in Denmark. Epidemiology 19:536–543PubMedGoogle Scholar
  4. 4.
    Kendall GM, Smith TJ (2005) Doses from radon and its decay products to children. J Radiol Prot 25:241–256CrossRefPubMedGoogle Scholar
  5. 5.
    Harley NH, Robbins ES (2009) Radon and leukemia in the Danish study: another source of dose. Health Phys 97:343–347CrossRefPubMedGoogle Scholar
  6. 6.
    Tokonami S (2000) Experimental verification of the attachment theory of radon progeny onto ambient aerosols. Health Phys 78:74–79CrossRefPubMedGoogle Scholar
  7. 7.
    Yu KN, Wong BTY, Law JYP, Lau BMF, Nikezic D (2001) Indoor dose conversion coefficients for radon progeny for different ambient environments. Environ Sci Technol 35:2136–2140CrossRefPubMedGoogle Scholar
  8. 8.
    Raaschou-Nielsen O, Reynolds P (2006) Air pollution and childhood cancer: a review of the epidemiological literature. Int J Cancer 118:2920–2929CrossRefPubMedGoogle Scholar
  9. 9.
    Abu-Jarad F (1997) Indoor cigarette smoking: uranium contents and carrier of indoor radon products. Radiat Meas 28:579–584CrossRefGoogle Scholar
  10. 10.
    Bair WJ (1995) The ICRP human respiratory tract model for radiological protection. Radiat Prot Dosimetry 60:307–310Google Scholar
  11. 11.
    Darby S, Hill D, Auvinen A et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330:223CrossRefPubMedGoogle Scholar
  12. 12.
    Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242CrossRefPubMedGoogle Scholar
  13. 13.
    Schneider T, Jensen KA, Clausen PA et al (2004) Prediction of indoor concentration of 0.5–4 mm particles of outdoor origin in an uninhabited apartment. Atmos Environ 38:6349–6359CrossRefGoogle Scholar
  14. 14.
    Storm HH, Michelsen EV, Clemmensen IH, Pihl J (1997) The Danish cancer registry-history, content, quality and use. Dan Med Bull 44:535–539PubMedGoogle Scholar
  15. 15.
    Andersen CE, Raaschou-Nielsen O, Andersen HP et al (2007) Prediction of 222Rn in Danish dwellings using geology and house construction information from central databases. Radiat Prot Dosimetry 123:83–94CrossRefPubMedGoogle Scholar
  16. 16.
    Raaschou-Nielsen O, Hertel O, Thomsen BL, Olsen JH (2001) Air pollution from traffic at the residence of children with cancer. Am J Epidemiol 153:433–443CrossRefPubMedGoogle Scholar
  17. 17.
    Raaschou-Nielsen O, Hertel O, Vignati E et al (2000) An air pollution model for use in epidemiological studies: evaluation with measured levels of nitrogen dioxide and benzene. J Expo Anal Environ Epidemiol 10:4–14CrossRefPubMedGoogle Scholar
  18. 18.
    Ketzel M, Wahlin P, Berkowicz R, Palmgren F (2003) Particle and trace gas emission factors under urban driving conditions in Copenhagen based on street and roof-level observations. Atmos Environ 37:2735–2749CrossRefGoogle Scholar
  19. 19.
    Hertel O, Jensen SS, Andersen HV et al (2001) Human exposure to traffic pollution. Experience from Danish studies. Pure Appl Chem 73:137–145CrossRefGoogle Scholar
  20. 20.
    Savitz DA, Feingold L (1989) Association of childhood cancer with residential traffic density. Scand J Work Environ Health 15:360–363PubMedGoogle Scholar
  21. 21.
    Olsen JH, Nielsen A, Schulgen G (1993) Residence near high voltage facilities and risk of cancer in children. BMJ 307:891–895CrossRefPubMedGoogle Scholar
  22. 22.
    Jonassen N, Jensen B (1992) Measurement of simulated lung deposition of radon daughters. Radiat Prot Dosimetry 45:669–671Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elvira Vaclavik Bräuner
    • 1
  • Claus E. Andersen
    • 2
  • Helle P. Andersen
    • 3
  • Peter Gravesen
    • 4
  • Morten Lind
    • 3
  • Kaare Ulbak
    • 5
  • Ole Hertel
    • 6
    • 7
  • Joachim Schüz
    • 1
  • Ole Raaschou-Nielsen
    • 1
  1. 1.Institute of Cancer Epidemiology, Danish Cancer SocietyCopenhagenDenmark
  2. 2.Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark
  3. 3.National Survey and CadastraCopenhagenDenmark
  4. 4.Geological Survey of Denmark and GreenlandCopenhagenDenmark
  5. 5.National Institute of Radiation ProtectionHerlevDenmark
  6. 6.National Environment Research InstituteAarhus UniversityRoskildeDenmark
  7. 7.Department for Environmental, Social and Spatial Change (ENSPAC)Roskilde UniversityRoskildeDenmark

Personalised recommendations