Cancer Causes & Control

, Volume 21, Issue 4, pp 597–608 | Cite as

Genes involved with folate uptake and distribution and their association with colorectal cancer risk

  • Jane C. Figueiredo
  • A. Joan Levine
  • Won H. Lee
  • David V. Conti
  • Jenny N. Poynter
  • Peter T. Campbell
  • David Duggan
  • Juan Pablo Lewinger
  • Maria Elena Martinez
  • Cornelia M. Ulrich
  • Polly Newcomb
  • John Potter
  • Paul J. Limburg
  • John Hopper
  • Mark A. Jenkins
  • Loic Le Marchand
  • John A. Baron
  • Robert W. Haile
Original paper

Abstract

Folate status is an important predictor of colorectal cancer risk. Common genetic variants in genes involved in regulating cellular folate levels might also predict risk, but there are limited data on this issue. We conducted a family-based case–control association study of variants in four genes involved in folate uptake and distribution: FOLR1, FPGS, GGH and SLC19A1, using 1,750 population-based and 245 clinic-based cases of pathologically confirmed colorectal cancer and their unaffected relatives participating in the Colon Cancer Family Registries. Standardized questionnaires, administered to all participants, collected information on risk factors and diet. Standard molecular techniques were used to determine microsatellite instability (MSI) status on cases. tagSNPs (n = 29) were selected based on coverage as assessed by pairwise r2. We found no evidence that tagSNPs in these genes were associated with risk of colorectal cancer. For the SLC19A1-rs1051266 (G80A, Arg27His) missense polymorphism, the A/A genotype was not associated with risk of colorectal cancer using population-based (OR = 1.00; 95% CI = 0.81–1.23) or clinic-based (OR = 0.75; 95% CI = 0.44–1.29) families compared to the G/A and G/G genotypes. We found no evidence that the association between any tagSNP and CRC risk was modified by multivitamin use, folic acid use and dietary folate intake and total folate intake. The odds ratios were similar, irrespective of MSI status, tumor subsite and family history of colorectal cancer. In conclusion, we found no significant evidence that genetic variants in FOLR1, GGH, FPGS and SLC19A1 are associated with the risk of colorectal cancer.

Keywords

Folate Folate receptor 1 (FOLR1) Solute carrier family 19 (SLC19A1) Reduced folate carrier (RFC) Folylpolyglutamate synthase (FPGS) Gamma-glutamyl hydrolase (GGH) Family-based Population-based Clinic-based Polymorphisms Colorectal cancer Case–control 

References

  1. 1.
    Kim YI (2003) Role of folate in colon cancer development and progression. J Nutr 133:3731S–3739SPubMedGoogle Scholar
  2. 2.
    Choi SW, Mason JB (2002) Folate status: effects on pathways of colorectal carcinogenesis. J Nutr 132:2413S–2418SPubMedGoogle Scholar
  3. 3.
    Giovannucci E (2002) Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr 132:2350S–2355SPubMedGoogle Scholar
  4. 4.
    Kim YI (2004) Will mandatory folic acid fortification prevent or promote cancer? Am J Clin Nutr 80:1123–1128PubMedGoogle Scholar
  5. 5.
    Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS, McKeown-Eyssen G, Summers RW, Rothstein RI, Burke CA, Snover DC, Church TR, Allen JI, Robertson DJ, Beck GJ, Bond JH, Byers T, Mandel JS, Mott LA, Pearson LH, Barry EL, Rees JR, Marcon N, Saibil F, Ueland PM, Greenberg ER (2007) Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. Jama 297:2351–2359CrossRefPubMedGoogle Scholar
  6. 6.
    Mason JB, Dickstein A, Jacques PF, Haggarty P, Selhub J, Dallal G, Rosenberg IH (2007) A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomark Prev 16:1325–1329CrossRefGoogle Scholar
  7. 7.
    Ulrich CM, Potter JD (2006) Folate supplementation: too much of a good thing? Cancer Epidemiol Biomark Prev 15:189–193CrossRefGoogle Scholar
  8. 8.
    Ulrich CM, Potter JD (2007) Folate and cancer—timing is everything. Jama 297:2408–2409CrossRefPubMedGoogle Scholar
  9. 9.
    Ulrich CM (2007) Folate and cancer prevention: a closer look at a complex picture. Am J Clin Nutr 86:271–273PubMedGoogle Scholar
  10. 10.
    Kim YI (2006) Folate: a magic bullet or a double edged sword for colorectal cancer prevention? Gut 55:1387–1389CrossRefPubMedGoogle Scholar
  11. 11.
    Figueiredo JC, Levine AJ, Grau MV, Barry EL, Ueland PM, Ahnen DJ, Byers T, Bresalier RS, Summers RW, Bond J, McKeown-Eyssen GE, Sandler RS, Haile RW, Baron JA (2008) Colorectal adenomas in a randomized folate trial: the role of baseline dietary and circulating folate levels. Cancer Epidemiol Biomark Prev 17:2625–2631CrossRefGoogle Scholar
  12. 12.
    Reed MC, Nijhout HF, Neuhouser ML, Gregory JF III, Shane B, James SJ, Boynton A, Ulrich CM (2006) A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism. J Nutr 136:2653–2661PubMedGoogle Scholar
  13. 13.
    Galivan J, Ryan TJ, Chave K, Rhee M, Yao R, Yin D (2000) Glutamyl hydrolase, pharmacological role and enzymatic characterization. Pharmacol Ther 85:207–215CrossRefPubMedGoogle Scholar
  14. 14.
    Sierra EE, Goldman ID (1999) Recent advances in the understanding of the mechanism of membrane transport of folates and antifolates. Semin Oncol 26:11–23PubMedGoogle Scholar
  15. 15.
    Spiegelstein O, Eudy JD, Finnell RH (2000) Identification of two putative novel folate receptor genes in humans and mouse. Gene 258:117–125CrossRefPubMedGoogle Scholar
  16. 16.
    Matherly LH (2001) Molecular and cellular biology of the human reduced folate carrier. Prog Nucleic Acid Res Mol Biol 67:131–162CrossRefPubMedGoogle Scholar
  17. 17.
    Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M (1992) Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 44:1898–1901CrossRefPubMedGoogle Scholar
  18. 18.
    Lowe KE, Osborne CB, Lin BF, Kim JS, Hsu JC, Shane B (1993) Regulation of folate and one-carbon metabolism in mammalian cells. II. Effect of folylpoly-gamma-glutamate synthetase substrate specificity and level on folate metabolism and folylpoly-gamma-glutamate specificity of metabolic cycles of one-carbon metabolism. J Biol Chem 268:21665–21673PubMedGoogle Scholar
  19. 19.
    Newcomb PA, Baron J, Cotterchio M, Gallinger S, Grove J, Haile R, Hall D, Hopper JL, Jass J, Le Marchand L, Limburg P, Lindor N, Potter JD, Templeton AS, Thibodeau S, Seminara D (2007) Colon cancer family registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol Biomark Prev 16:2331–2343CrossRefGoogle Scholar
  20. 20.
    Witte JS, Gauderman WJ, Thomas DC (1999) Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. Am J Epidemiol 149:693–705PubMedGoogle Scholar
  21. 21.
    Stram DO, Hankin JH, Wilkens LR, Pike MC, Monroe KR, Park S, Henderson BE, Nomura AM, Earle ME, Nagamine FS, Kolonel LN (2000) Calibration of the dietary questionnaire for a multiethnic cohort in Hawaii and Los Angeles. Am J Epidemiol 151:358–370PubMedGoogle Scholar
  22. 22.
    Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, Gallinger S, Bapat B, Aronson M, Hopper J, Jass J, LeMarchand L, Grove J, Potter J, Newcomb P, Terdiman JP, Conrad P, Moslein G, Goldberg R, Ziogas A, Anton-Culver H, de Andrade M, Siegmund K, Thibodeau SN, Boardman LA, Seminara D (2005) Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. Jama 293:1979–1985CrossRefPubMedGoogle Scholar
  23. 23.
    World Health Organization (2000) International classification of diseases for oncology. WHO, GenevaGoogle Scholar
  24. 24.
    Edlund CK, Lee WH, Li D, Van Den Berg DJ, Conti DV (2008) Snagger: a user-friendly program for incorporating additional information for tagSNP selection. BMC Bioinformatics 9:174CrossRefPubMedGoogle Scholar
  25. 25.
    Siegmund KD, Langholz B, Kraft P, Thomas DC (2000) Testing linkage disequilibrium in sibships. Am J Hum Genet 67:244–248CrossRefPubMedGoogle Scholar
  26. 26.
    Chatzikyriakidou A, Vakalis KV, Kolaitis N, Kolios G, Naka KK, Michalis LK, Georgiou I (2008) Distinct association of SLC19A1 polymorphism -43T > C with red cell folate levels and of MTHFR polymorphism 677C > T with plasma folate levels. Clin Biochem 41:174–176CrossRefPubMedGoogle Scholar
  27. 27.
    Conneely KN, Boehnke M (2007) So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. Am J Hum Genet 81(6):1158–1168CrossRefGoogle Scholar
  28. 28.
    Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD, Bergen AW, Swan GE, Tyndale RF, Benowitz NL, Lerman C (2008) Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation. Hum Mol Genet 17:2834–2848CrossRefPubMedGoogle Scholar
  29. 29.
    Odin E, Wettergren Y, Nilsson S, Willen R, Carlsson G, Spears CP, Larsson L, Gustavsson B (2003) Altered gene expression of folate enzymes in adjacent mucosa is associated with outcome of colorectal cancer patients. Clin Cancer Res 9:6012–6019PubMedGoogle Scholar
  30. 30.
    Moscow JA (1998) Methotrexate transport and resistance. Leuk Lymphoma 30:215–224PubMedGoogle Scholar
  31. 31.
    Chango A, Emery-Fillon N, de Courcy GP, Lambert D, Pfister M, Rosenblatt DS, Nicolas JP (2000) A polymorphism (80G- > A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70:310–315CrossRefPubMedGoogle Scholar
  32. 32.
    Devlin AM, Clarke R, Birks J, Evans JG, Halsted CH (2006) Interactions among polymorphisms in folate-metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am J Clin Nutr 83:708–713PubMedGoogle Scholar
  33. 33.
    Winkelmayer WC, Eberle C, Sunder-Plassmann G, Fodinger M (2003) Effects of the glutamate carboxypeptidase II (GCP2 1561C > T) and reduced folate carrier (RFC1 80G > A) allelic variants on folate and total homocysteine levels in kidney transplant patients. Kidney Int 63:2280–2285CrossRefPubMedGoogle Scholar
  34. 34.
    Fredriksen A, Meyer K, Ueland PM, Vollset SE, Grotmol T, Schneede J (2007) Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum Mutat 28:856–865CrossRefPubMedGoogle Scholar
  35. 35.
    Lissowska J, Gaudet MM, Brinton LA, Chanock SJ, Peplonska B, Welch R, Zatonski W, Szeszenia-Dabrowska N, Park S, Sherman M, Garcia-Closas M (2007) Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: a population-based case-control study and meta-analyses. Int J Cancer 120:2696–2703CrossRefPubMedGoogle Scholar
  36. 36.
    Ulrich CM, Curtin K, Potter JD, Bigler J, Caan B, Slattery ML (2005) Polymorphisms in the reduced folate carrier, thymidylate synthase, or methionine synthase and risk of colon cancer. Cancer Epidemiol Biomark Prev 14:2509–2516CrossRefGoogle Scholar
  37. 37.
    Moore LE, Malats N, Rothman N, Real FX, Kogevinas M, Karami S, Garcia-Closas R, Silverman D, Chanock S, Welch R, Tardon A, Serra C, Carrato A, Dosemeci M, Garcia-Closas M (2007) Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer 120:2452–2458CrossRefPubMedGoogle Scholar
  38. 38.
    Wang L, Chen W, Wang J, Tan Y, Zhou Y, Ding W, Hua Z, Shen J, Xu Y, Shen H (2006) Reduced folate carrier gene G80A polymorphism is associated with an increased risk of gastroesophageal cancers in a Chinese population. Eur J Cancer 42:3206–3211CrossRefPubMedGoogle Scholar
  39. 39.
    Curtin K, Slattery ML, Ulrich CM, Bigler J, Levin TR, Wolff RK, Albertsen H, Potter JD, Samowitz WS (2007) Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet. Carcinogenesis 28(8):1672–1679CrossRefPubMedGoogle Scholar
  40. 40.
    Iwakiri S, Sonobe M, Nagai S, Hirata T, Wada H, Miyahara R (2008) Expression status of folate receptor alpha is significantly correlated with prognosis in non-small-cell lung cancers. Ann Surg Oncol 15:889–899CrossRefPubMedGoogle Scholar
  41. 41.
    Allard JE, Risinger JI, Morrison C, Young G, Rose GS, Fowler J, Berchuck A, Maxwell GL (2007) Overexpression of folate binding protein is associated with shortened progression-free survival in uterine adenocarcinomas. Gynecol Oncol 107:52–57CrossRefPubMedGoogle Scholar
  42. 42.
    Ma DW, Finnell RH, Davidson LA, Callaway ES, Spiegelstein O, Piedrahita JA, Salbaum JM, Kappen C, Weeks BR, James J, Bozinov D, Lupton JR, Chapkin RS (2005) Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis. Cancer Res 65:887–897PubMedGoogle Scholar
  43. 43.
    Kelemen LE (2006) The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119:243–250CrossRefPubMedGoogle Scholar
  44. 44.
    Borjel AK, Yngve A, Sjostrom M, Nilsson TK (2006) Novel mutations in the 5′-UTR of the FOLR1 gene. Clin Chem Lab Med 44:161–167CrossRefPubMedGoogle Scholar
  45. 45.
    Kamen BA, Wang MT, Streckfuss AJ, Peryea X, Anderson RG (1988) Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem 263:13602–13609PubMedGoogle Scholar
  46. 46.
    Chave KJ, Ryan TJ, Chmura SE, Galivan J (2003) Identification of single nucleotide polymorphisms in the human gamma-glutamyl hydrolase gene and characterization of promoter polymorphisms. Gene 319:167–175CrossRefPubMedGoogle Scholar
  47. 47.
    DeVos L, Chanson A, Liu Z, Ciappio ED, Parnell LD, Mason JB, Tucker KL, Crott JW (2008) Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine, and DNA uracil concentrations. Am J Clin Nutr 88:1149–1158PubMedGoogle Scholar
  48. 48.
    Leil TA, Endo C, Adjei AA, Dy GK, Salavaggione OE, Reid JR, Ames MM (2007) Identification and characterization of genetic variation in the folylpolyglutamate synthase gene. Cancer Res 67:8772–8782CrossRefPubMedGoogle Scholar
  49. 49.
    Lee KM, Lan Q, Kricker A, Purdue MP, Grulich AE, Vajdic CM, Turner J, Whitby D, Kang D, Chanock S, Rothman N, Armstrong BK (2007) One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia. Hum Genet 122:525–533CrossRefPubMedGoogle Scholar
  50. 50.
    Lim U, Wang SS, Hartge P, Cozen W, Kelemen LE, Chanock S, Davis S, Blair A, Schenk M, Rothman N, Lan Q (2007) Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER case-control study. Blood 109:3050–3059PubMedGoogle Scholar
  51. 51.
    Imai K, Yamamoto H (2008) Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29:673–680CrossRefPubMedGoogle Scholar
  52. 52.
    Liu K (1988) Measurement error and its impact on partial correlation and multiple linear regression analyses. Am J Epidemiol 127:864–874PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jane C. Figueiredo
    • 1
  • A. Joan Levine
    • 1
  • Won H. Lee
    • 1
  • David V. Conti
    • 1
  • Jenny N. Poynter
    • 1
    • 2
  • Peter T. Campbell
    • 3
    • 7
  • David Duggan
    • 4
  • Juan Pablo Lewinger
    • 1
  • Maria Elena Martinez
    • 5
    • 6
  • Cornelia M. Ulrich
    • 7
  • Polly Newcomb
    • 7
  • John Potter
    • 7
  • Paul J. Limburg
    • 8
  • John Hopper
    • 9
  • Mark A. Jenkins
    • 9
  • Loic Le Marchand
    • 10
  • John A. Baron
    • 11
  • Robert W. Haile
    • 1
  1. 1.Department of Preventive Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Division of Pediatric Epidemiology and Clinical ResearchUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of EpidemiologyAmerican Cancer SocietyAtlantaUSA
  4. 4.Translational Genomics Research InstitutePhoenixUSA
  5. 5.Arizona Cancer CenterUniversity of ArizonaTucsonUSA
  6. 6.Mel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonUSA
  7. 7.Cancer Prevention ProgramFred Hutchinson Cancer Research CenterSeattleUSA
  8. 8.Mayo ClinicRochesterUSA
  9. 9.Centre for Molecular, Environmental, Genetic and Analytic EpidemiologyUniversity of MelbourneMelbourneAustralia
  10. 10.Cancer Research Center of HawaiiUniversity of HawaiiHonoluluUSA
  11. 11.Departments of Medicine and Community and Family MedicineDartmouth Medical SchoolHanoverUSA

Personalised recommendations