Cancer Causes & Control

, Volume 21, Issue 2, pp 289–300 | Cite as

Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study

  • Ilir Agalliu
  • Erika M. Kwon
  • Claudia A. Salinas
  • Joseph S. Koopmeiners
  • Elaine A. Ostrander
  • Janet L. Stanford
Original paper



DNA repair pathways are crucial to prevent accumulation of DNA damage and maintain genomic stability. Alterations of this pathway have been reported in many cancers. An increase in oxidative DNA damage or decrease in DNA repair capacity with aging or due to germline genetic variation may affect prostate cancer risk.


Pooled data from two population-based studies (1,457 cases and 1,351 controls) were analyzed to examine associations between 28 single-nucleotide polymorphisms (SNPs) in nine DNA repair genes (APEX1, BRCA2, ERCC2, ERCC4, MGMT, MUTYH, OGG1, XPC, and XRCC1) and prostate cancer risk. We also explored whether associations varied by smoking, by family history or clinical features of prostate cancer.


There were no associations between these SNPs and overall risk of prostate cancer. Risks by genotype also did not vary by smoking or by family history of prostate cancer. Although two SNPs in BRCA2 (rs144848, rs1801406) and two SNPs in ERCC2 (rs1799793, rs13181) showed stronger associations with high Gleason score or advanced-stage tumors when comparing homozygous men carrying the minor versus major allele, results were not statistically significantly different between clinically aggressive and non-aggressive tumors.


Overall, this study found no associations between prostate cancer and the SNPs in DNA repair genes. Given the complexity of this pathway and its crucial role in maintenance of genomic stability, a pathway-based analysis of all 150 genes in DNA repair pathways, as well as exploration of gene–environment interactions may be warranted.


DNA repair SNPs Prostate cancer Case–control study Genetic variation 



We are grateful to all the men who participated in these studies for their time, effort and cooperation, and interviewers for their help with data collection. This work was supported by NIH grants R01-CA56678, R01-CA092579 and contract N01-CN-05230 from the National Cancer Institute. Additional support was provided by the Fred Hutchinson Cancer Research Center and the Intramural Program of the National Human Genome Research Institute. Ilir Agalliu was supported by funds from the Albert Einstein College of Medicine of Yeshiva University.


  1. 1.
    American Cancer Society (2009) Cancer facts and figures: 2009. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M et al (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85CrossRefPubMedGoogle Scholar
  3. 3.
    Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM et al (2000) Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 89(1):123–134CrossRefPubMedGoogle Scholar
  4. 4.
    Pathak SK, Sharma RA, Steward WP, Mellon JK, Griffiths TR, Gescher AJ (2005) Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer 41(1):61–70CrossRefPubMedGoogle Scholar
  5. 5.
    Khandrika L, Kumar B, Koul S, Maroni P, Koul HK (2009) Oxidative stress in prostate cancer. Cancer Lett 282(2):125–136CrossRefPubMedGoogle Scholar
  6. 6.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J 17(10):1195–1214CrossRefPubMedGoogle Scholar
  7. 7.
    Sikka SC (2003) Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach. Curr Med Chem 10(24):2679–2692CrossRefPubMedGoogle Scholar
  8. 8.
    Rybicki BA, Rundle A, Savera AT, Sankey SS, Tang D (2004) Polycyclic aromatic hydrocarbon-DNA adducts in prostate cancer. Cancer Res 64(24):8854–8859CrossRefPubMedGoogle Scholar
  9. 9.
    Rybicki BA, Nock NL, Savera AT, Tang D, Rundle A (2006) Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer Lett 239(2):157–167CrossRefPubMedGoogle Scholar
  10. 10.
    Tang D, Liu JJ, Rundle A, Neslund-Dudas C, Savera AT, Bock CH et al (2007) Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. Cancer Epidemiol Biomarkers Prev 16(4):803–808CrossRefPubMedGoogle Scholar
  11. 11.
    Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193(1–2):3–34CrossRefPubMedGoogle Scholar
  12. 12.
    Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291(5507):1284–1289CrossRefPubMedGoogle Scholar
  13. 13.
    Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11:S52–S59PubMedGoogle Scholar
  14. 14.
    Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696CrossRefPubMedGoogle Scholar
  15. 15.
    Hu JJ, Mohrenweiser HW, Bell DA, Leadon SA, Miller MS (2002) Symposium overview: genetic polymorphisms in DNA repair and cancer risk. Toxicol Appl Pharmacol 185(1):64–73CrossRefPubMedGoogle Scholar
  16. 16.
    Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11(12):1513–1530PubMedGoogle Scholar
  17. 17.
    Hu JJ, Hall MC, Grossman L, Hedayati M, McCullough DL, Lohman K et al (2004) Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 64(3):1197–1201CrossRefPubMedGoogle Scholar
  18. 18.
    Hung RJ, Hall J, Brennan P, Boffetta P (2005) Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 162(10):925–942CrossRefPubMedGoogle Scholar
  19. 19.
    Xu J, Zheng SL, Turner A, Isaacs SD, Wiley KE, Hawkins GA et al (2002) Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 62(8):2253–2257PubMedGoogle Scholar
  20. 20.
    van Gils CH, Bostick RM, Stern MC, Taylor JA (2002) Differences in base excision repair capacity may modulate the effect of dietary antioxidant intake on prostate cancer risk: an example of polymorphisms in the XRCC1 gene. Cancer Epidemiol Biomarkers Prev 11(11):1279–1284PubMedGoogle Scholar
  21. 21.
    Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS (2004) DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 13(1):23–29CrossRefPubMedGoogle Scholar
  22. 22.
    Ritchey JD, Huang WY, Chokkalingam AP, Gao YT, Deng J, Levine P et al (2005) Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 14(7):1703–1709CrossRefPubMedGoogle Scholar
  23. 23.
    Nock NL, Cicek MS, Li L, Liu X, Rybicki BA, Moreira A et al (2006) Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis 27(9):1842–1848CrossRefPubMedGoogle Scholar
  24. 24.
    Chen L, Ambrosone CB, Lee J, Sellers TA, Pow-Sang J, Park JY (2006) Association between polymorphisms in the DNA repair genes XRCC1 and APE1, and the risk of prostate cancer in white and black Americans. J Urol 175(1):108–112 (discussion 12)CrossRefPubMedGoogle Scholar
  25. 25.
    Hirata H, Hinoda Y, Tanaka Y, Okayama N, Suehiro Y, Kawamoto K et al (2007) Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer 43(2):231–237CrossRefPubMedGoogle Scholar
  26. 26.
    Hooker S, Bonilla C, Akereyeni F, Ahaghotu C, Kittles RA (2008) NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis 11(4):349–356CrossRefPubMedGoogle Scholar
  27. 27.
    Stanford JL, Wicklund KG, McKnight B, Daling JR, Brawer MK (1999) Vasectomy and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 8(10):881–886PubMedGoogle Scholar
  28. 28.
    Agalliu I, Salinas CA, Hansten PD, Ostrander EA, Stanford JL (2008) Statin use and risk of prostate cancer: results from a population-based epidemiologic study. Am J Epidemiol 168(3):250–260CrossRefPubMedGoogle Scholar
  29. 29.
    Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10(6):591–597CrossRefPubMedGoogle Scholar
  30. 30.
    Sambrook J, Fritsch EF, Maniatis T (1989) Isolation of high-molecular weight DNA from mammalian cells. In: Nolan C (ed) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Plainview, pp 9.16–99.9Google Scholar
  31. 31.
    Ott J (1999) Analysis of human genetic linkage. John Hopkins University Press, BaltimoreGoogle Scholar
  32. 32.
    Breslow NE, Day NE (1980) Statistical methods in cancer research, volume 1—the analysis of case-control studies. International Agency for Research on Cancer, LyonGoogle Scholar
  33. 33.
    Klienbaum DG, Nizam A, Kupper L, Muller KE (2007) Applied regression analysis and multivariate methods, 4th edn. Duxbury Press, Pacific GroveGoogle Scholar
  34. 34.
    Dubin N, Pasternack BS (1986) Risk assessment for case-control subgroups by polychotomous logistic regression. Am J Epidemiol 123(6):1101–1117PubMedGoogle Scholar
  35. 35.
    The Breast Cancer Linkage C (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91(15):1310–1316CrossRefGoogle Scholar
  36. 36.
    Johannsson O, Loman N, Moller T, Kristoffersson U, Borg A, Olsson H (1999) Incidence of malignant tumours in relatives of BRCA1 and BRCA2 germline mutation carriers. Eur J Cancer 35(8):1248–1257CrossRefPubMedGoogle Scholar
  37. 37.
    Eerola H, Pukkala E, Pyrhonen S, Blomqvist C, Sankila R, Nevanlinna H (2001) Risk of cancer in BRCA1 and BRCA2 mutation-positive and -negative breast cancer families (Finland). Cancer Causes Control 12:739–746CrossRefPubMedGoogle Scholar
  38. 38.
    Tulinius H, Olafsdottir GH, Sigvaldason H, Arason A, Barkardottir RB, Egilsson V et al (2002) The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet 39(7):457–462CrossRefPubMedGoogle Scholar
  39. 39.
    Bermejo JL, Hemminki K (2004) Risk of cancer at sites other than the breast in Swedish families eligible for BRCA1 or BRCA2 mutation testing. Ann Oncol 15:1834–1841CrossRefGoogle Scholar
  40. 40.
    van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, Hoogerbrugge N, Verhoef S (2005) Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42:711–719CrossRefPubMedGoogle Scholar
  41. 41.
    Sigurdsson S, Thorlacius S, Tomasson J, Tryggvadottir L, Benediktsdottir K, Eyfjörd JE et al (1997) BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med 75:758–761CrossRefPubMedGoogle Scholar
  42. 42.
    Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M et al (1997) The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336(20):1401–1408CrossRefPubMedGoogle Scholar
  43. 43.
    Kirchhoff T, Kauff ND, Mitra N, Nafa K, Huang H, Palmer C et al (2004) BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 10:2918–2921CrossRefPubMedGoogle Scholar
  44. 44.
    Agalliu I, Gern R, Leanza S, Burk RD (2009) Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 15(3):1112–1120CrossRefPubMedGoogle Scholar
  45. 45.
    Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P et al (2003) Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72:1–12CrossRefPubMedGoogle Scholar
  46. 46.
    Agalliu I, Karlins E, Kwon EM, Iwasaki LM, Diamond A, Ostrander EA et al (2007) Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97(6):826–831CrossRefPubMedGoogle Scholar
  47. 47.
    Ostrander EA, Udler MS (2008) The role of the BRCA2 gene in susceptibility to prostate cancer revisited. Cancer Epidemiol Biomarkers Prev 17(8):1843–1848CrossRefPubMedGoogle Scholar
  48. 48.
    Braithwaite E, Wu X, Wang Z (1998) Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro. Carcinogenesis 19(7):1239–1246CrossRefPubMedGoogle Scholar
  49. 49.
    Platz EA, De Marzo AM, Giovannucci E (2004) Prostate cancer association studies: pitfalls and solutions to cancer misclassification in the PSA era. J Cell Biochem 91(3):553–571CrossRefPubMedGoogle Scholar
  50. 50.
    Kondylis FI, Moriarty RP, Bostwick D, Schellhammer PF (2003) Prostate cancer grade assignment: the effect of chronological, interpretive and translation bias. J Urol 170(4 Pt 1):1189–1193CrossRefPubMedGoogle Scholar
  51. 51.
    Albertsen PC, Hanley JA, Barrows GH, Penson DF, Kowalczyk PDH (2005) Prostate cancer and the Will Rogers phenomenon. J Natl Cancer Inst 97(17):1248–1252PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ilir Agalliu
    • 1
  • Erika M. Kwon
    • 2
  • Claudia A. Salinas
    • 3
    • 4
    • 6
  • Joseph S. Koopmeiners
    • 3
    • 5
  • Elaine A. Ostrander
    • 2
  • Janet L. Stanford
    • 3
    • 4
  1. 1.Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxUSA
  2. 2.Cancer Genetics Branch, National Human Genome Research InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  4. 4.Department of Epidemiology, School of Public HealthUniversity of WashingtonSeattleUSA
  5. 5.Department of Biostatistics, School of Public HealthUniversity of WashingtonSeattleUSA
  6. 6.Division of Hematology and OncologyUniversity of Michigan Cancer CenterAnn ArborUSA

Personalised recommendations