Cancer Causes & Control

, Volume 20, Issue 5, pp 517–523 | Cite as

Vaccination history and risk of non-hodgkin lymphoma: a population-based, case–control study

  • Heather A. Lankes
  • Angela J. Fought
  • Andrew M. Evens
  • Dennis D. Weisenburger
  • Brian C.-H. ChiuEmail author
Original Paper



As factors that alter the immune system have been implicated in non-Hodgkin lymphoma (NHL) etiology, it is of interest to explore the association between vaccination and risk of NHL. Results of few epidemiologic studies conducted thus far are inconsistent, and only one has examined the association by histologic subtype.


A population-based, case–control study of 387 patients with NHL and 535 controls conducted in Nebraska between 1999 and 2002.


Information on vaccination for tetanus, polio, influenza, smallpox, and tuberculosis, as well as important environmental factors, was collected by telephone interview. Risk was estimated by odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for confounders.


We found that NHL risk was inversely associated with ever receiving a polio (OR = 0.59, CI = 0.40–0.87) or smallpox (OR = 0.71, CI = 0.51–0.98) vaccination, and positively associated with influenza vaccination (OR = 1.53, CI = 1.14–2.06). No significant association was found for tetanus or tuberculosis vaccination. The patterns of association were similar between men and women. Analysis by histologic subtypes showed that polio vaccination was associated with a lower risk of follicular (OR = 0.54, CI = 0.31–0.92) and chronic lymphocytic leukemia/small lymphocytic lymphomas (OR = 0.29, CI = 0.12–0.69) and smallpox vaccination was associated with a lower risk of marginal zone lymphoma (OR = 0.41, CI = 0.19–0.88). In contrast, ever receiving an influenza vaccination was associated with a higher risk of follicular (OR = 1.98, CI = 1.23–3.18) and diffuse large B cell lymphomas (OR = 1.88, CI = 1.13–3.12).


Risk of NHL is inversely associated with polio and smallpox vaccination and positively associated with influenza vaccination. These associations appear to differ by histologic subtype.


Non-Hodgkin lymphoma Vaccination Risk factors Epidemiology 



This research was supported by research grant 99B083 from the American Institute for Cancer Research (BCC) and National Cancer Institute grant R25 CA100600 (HAL). Dr. Evens was supported in part by an NCI award (K23 CA109613). The authors would like to thank Mr. Martin Bast of the Nebraska Lymphoma Registry and Tissue Bank for coordinating the patient identification and physician consent.


  1. 1.
    Grulich AE, Vajdic CM, Cozen W (2007) Altered immunity as a risk factor for non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 16:405–408. doi: 10.1158/1055-9965.EPI-06-1070 PubMedCrossRefGoogle Scholar
  2. 2.
    Filipovich AH, Mathur A, Kamat D, Shapiro RS (1992) Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res 52:5465–5467Google Scholar
  3. 3.
    Engels EA, Pfeiffer RM, Goedert JJ et al (2006) Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS 20:1645–1654. doi: 10.1097/01.aids.0000238411.75324.59 PubMedCrossRefGoogle Scholar
  4. 4.
    Goedert JJ (2000) The epidemiology of acquired immunodeficiency syndrome malignancies. Semin Oncol 27:390–401PubMedGoogle Scholar
  5. 5.
    Fisher SG, Fisher RI (2006) The emerging concept of antigen-driven lymphomas: epidemiology and treatment implications. Curr Opin Oncol 18:417–424. doi: 10.1097/01.cco.0000239878.31463.0b PubMedCrossRefGoogle Scholar
  6. 6.
    Ekstrom-Smedby K (2006) Epidemiology and etiology of non-Hodgkin lymphoma—a review. Acta Oncol 45:258–271. doi: 10.1080/02841860500531682 PubMedCrossRefGoogle Scholar
  7. 7.
    Zintzaras E, Voulgarelis M, Moutsopoulos HM (2005) The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med 165:2337–2344. doi: 10.1001/archinte.165.20.2337 PubMedCrossRefGoogle Scholar
  8. 8.
    Engels EA (2007) Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 16:401–404. doi: 10.1158/1055-9965.EPI-06-1056 PubMedCrossRefGoogle Scholar
  9. 9.
    Jaffe ES (2004) Common threads of mucosa-associated lymphoid tissue lymphoma pathogenesis: from infection to translocation. J Natl Cancer Inst 96:571–573PubMedCrossRefGoogle Scholar
  10. 10.
    Pozzato G, Mazzaro C, Crovatto M et al (1994) Low-grade malignant lymphoma, hepatitis C virus infection, and mixed cryoglobulinemia. Blood 84:3047–3053PubMedGoogle Scholar
  11. 11.
    Suarez F, Lortholary O, Hermine O, Lecuit M (2006) Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 107:3034–3044. doi: 10.1182/blood-2005-09-3679 PubMedCrossRefGoogle Scholar
  12. 12.
    Bernstein L, Ross RK (1992) Prior medication use and health history as risk factors for non-Hodgkin’s lymphoma: preliminary results from a case–control study in Los Angeles County. Cancer Res 52:5510–5515Google Scholar
  13. 13.
    Holly EA, Bracci PM (2003) Population-based study of non-Hodgkin lymphoma, histology, and medical history among human immunodeficiency virus-negative participants in San Francisco. Am J Epidemiol 158:316–327. doi: 10.1093/aje/kwg145 PubMedCrossRefGoogle Scholar
  14. 14.
    Tavani A, La Vecchia C, Franceschi S, Serraino D, Carbone A (2000) Medical history and risk of Hodgkin’s and non-Hodgkin’s lymphomas. Eur J Cancer Prev 9:59–64. doi: 10.1097/00008469-200002000-00008 PubMedCrossRefGoogle Scholar
  15. 15.
    Chiu BC, Weisenburger DD (2003) An update of the epidemiology of non-Hodgkin’s lymphoma. Clin Lymphoma 4:161–168. doi: 10.3816/CLM.2003.n.025 PubMedCrossRefGoogle Scholar
  16. 16.
    Chiu BC, Kolar C, Gapstur SM, Lawson T, Anderson JR, Weisenburger DD (2005) Association of NAT and GST polymorphisms with non-Hodgkin’s lymphoma: a population-based case–control study. Br J Haematol 128:610–615. doi: 10.1111/j.1365-2141.2004.05358.x PubMedCrossRefGoogle Scholar
  17. 17.
    Chiu BC, Soni L, Gapstur SM, Fought AJ, Evens AM, Weisenburger DD (2007) Obesity and risk of non-Hodgkin lymphoma (United States). Cancer Causes Control 18:677–685. doi: 10.1007/s10552-007-9013-9 PubMedCrossRefGoogle Scholar
  18. 18.
    Waksberg J (1978) Sampling methods for random digit dialing. J Am Stat Assoc 73:40–46. doi: 10.2307/2286513 CrossRefGoogle Scholar
  19. 19.
    Breslow NE, Day NE (1993) Statistical methods in cancer research, vol 1. The analysis of case–control studies, IARC Sci PubGoogle Scholar
  20. 20.
    Jaffe ES, Harris NL, Stein H, Vardiman JW (2001) World health organization classification of tumors. pathology and genetics of tumors of haematopoietic and lymphoid tissues. IARC Press, LyonGoogle Scholar
  21. 21.
    Maldonado G, Greenland S (1993) Simulation study of confounder-selection strategies. Am J Epidemiol 138:923–936PubMedGoogle Scholar
  22. 22.
    Becker N, Deeg E, Rudiger T, Nieters A (2005) Medical history and risk for lymphoma: results of a population-based case–control study in Germany. Eur J Cancer 41:133–142. doi: 10.1016/j.ejca.2004.08.028 PubMedCrossRefGoogle Scholar
  23. 23.
    Holly EA, Lele C, Bracci PM, McGrath MS (1999) Case–control study of non-Hodgkin’s lymphoma among women and heterosexual men in the San Francisco Bay Area, California. Am J Epidemiol 150:375–389PubMedGoogle Scholar
  24. 24.
    Cozen W, Cerhan JR, Martinez-Maza O et al (2007) The effect of atopy, childhood crowding, and other immune-related factors on non-Hodgkin lymphoma risk. Cancer Causes Control 18:821–831. doi: 10.1007/s10552-007-9025-5 PubMedCrossRefGoogle Scholar
  25. 25.
    Gergely L, Aleksza M, Varoczy L et al (2004) Intracellular IL-4/IFN-gamma producing peripheral T lymphocyte subsets in B cell non-Hodgkin’s lymphoma patients. Eur J Haematol 72:336–341. doi: 10.1111/j.1600-0609.2004.00234.x PubMedCrossRefGoogle Scholar
  26. 26.
    Haynes L, Swain SL (2006) Why aging T cells fail: implications for vaccination. Immunity 24:663–666. doi: 10.1016/j.immuni.2006.06.003 PubMedCrossRefGoogle Scholar
  27. 27.
    McKee AS, Munks MW, Marrack P (2007) How do adjuvants work? Important considerations for new generation adjuvants. Immunity 27:687–690. doi: 10.1016/j.immuni.2007.11.003 PubMedCrossRefGoogle Scholar
  28. 28.
    Esser MT, Marchese RD, Kierstead LS et al (2003) Memory T cells and vaccines. Vaccine 21:419–430. doi: 10.1016/S0264-410X(02)00407-3 PubMedCrossRefGoogle Scholar
  29. 29.
    Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490–494. doi: 10.1126/science.296.5567.490 PubMedCrossRefGoogle Scholar
  30. 30.
    Mac Donald R, Baken L, Nelson A, Nichol KL (1999) Validation of self-report of influenza and pneumococcal vaccination status in elderly outpatients. Am J Prev Med 16:173–177. doi: 10.1016/S0749-3797(98)00159-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Shenson D, Dimartino D, Bolen J, Campbell M, Lu PJ, Singleton JA (2005) Validation of self-reported pneumococcal vaccination in behavioral risk factor surveillance surveys: experience from the sickness prevention achieved through regional collaboration (SPARC) program. Vaccine 23:1015–1020. doi: 10.1016/j.vaccine.2004.07.039 PubMedCrossRefGoogle Scholar
  32. 32.
    Skull SA, Andrews RM, Byrnes GB et al (2007) Validity of self-reported influenza and pneumococcal vaccination status among a cohort of hospitalized elderly inpatients. Vaccine 25:4775–4783. doi: 10.1016/j.vaccine.2007.04.015 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Heather A. Lankes
    • 1
  • Angela J. Fought
    • 1
  • Andrew M. Evens
    • 2
    • 3
  • Dennis D. Weisenburger
    • 4
  • Brian C.-H. Chiu
    • 1
    • 3
    Email author
  1. 1.Department of Preventive Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Division of Hematology/Oncology Lymphoma Program, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  3. 3.The Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoUSA
  4. 4.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations