Cancer Causes & Control

, 20:345 | Cite as

Soil zinc content, groundwater usage, and prostate cancer incidence in South Carolina

  • Sara E. Wagner
  • James B. Burch
  • Jim Hussey
  • Tom Temples
  • Susan Bolick-Aldrich
  • Catishia Mosley-Broughton
  • Yuan Liu
  • James R. Hebert
Original Paper

Abstract

Background

Prostate cancer (PrCA) incidence in South Carolina (SC) exceeds the national average, particularly among African Americans (AAs). Though data are limited, low environmental zinc exposures and down-regulation of prostatic zinc transporter proteins among AAs may explain, in part, the racial PrCA disparity.

Methods

Age-adjusted PrCA rates were calculated by census tract. Demographic data were obtained from the 1990 census. Hazardous waste site locations and soil zinc concentrations were obtained from existing federal and state databases. A geographic information system and Poisson regression were used to test the hypothesis that census tracts with reduced soil zinc concentrations, elevated groundwater use, or more agricultural or hazardous waste sites had elevated PrCA risks.

Results

Census tracts with high groundwater use and low zinc concentrations had higher PrCA rate ratios (RR: 1.270; 95% confidence interval: 1.079, 1.505). This effect was not more apparent in areas populated primarily by AAs.

Conclusion

Increased PrCA rates were associated with reduced soil zinc concentrations and elevated groundwater use, although this observation is not likely to contribute to SC’s racial PrCA disparity. Statewide mapping and statistical modeling of relationships between environmental factors, demographics, and cancer incidence can be used to screen hypotheses focusing on novel PrCA risk factors.

Keywords

South Carolina Cancer statistics Race Geographic information systems Disparities 

Abbreviations

PrCA

Prostate cancer

SC

South Carolina

AA

African-American

EA

European-American

PSA

Prostate-specific antigen

GIS

Geographic information system

RR

Rate ratio

SCCCR

South Carolina Central Cancer Registry

DHEC

Department of Health and Environmental Control

USGS

United States Geological Survey

CERCLA

Comprehensive Environmental Response, Compensation, and Liability Act

EPA

Environmental Protection Agency

ppm

Parts per million

ICP

Inductively coupled plasma

SIR

Standardized incidence ratio

CI

Confidence interval

CAR

Conditional autoregressive

MCMC

Markov chain Monte Carlo

Notes

Acknowledgments

Research Career Development Award, Department of Veteran’s Affairs VISN-7, Charleston, South Carolina to J. B. B.; National Cancer Institute, Community Networks Program (1 U01 CA114601-01 to J. R. H.).

References

  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics. CA Cancer J Clin 57(1):43–66PubMedCrossRefGoogle Scholar
  2. 2.
    Morton RA (1994) Racial differences in adenocarcinoma of the prostate in North American men. Urology 44(5):637–642. doi:10.1016/S0090-4295(94)80196-7 PubMedCrossRefGoogle Scholar
  3. 3.
    Pienta KJ, Demers R, Hoff M, Kau TY, Montie JE, Severson RK (1995) Effect of age and race on the survival of men with prostate cancer in the metropolitan Detroit tricounty area, 1973 to 1987. Urology 45(1):93–100. doi:10.1016/S0090-4295(95)96996-9 PubMedCrossRefGoogle Scholar
  4. 4.
    United States Census Bureau American Community Survey (2006) Data profile highlights. South CarolinaGoogle Scholar
  5. 5.
    US Cancer Statistics Working Group (2007) United States Cancer Statistics: 2004 Incidence and Mortality. US DHHS/CDC/NIH-NCI, Atlanta, GAGoogle Scholar
  6. 6.
    Drake BF, Keane TE, Mosley CM et al (2006) Prostate cancer disparities in South Carolina: early detection, special programs, and descriptive epidemiology. J S C Med Assoc 102:241–249PubMedGoogle Scholar
  7. 7.
    Allen NE, Sauvaget C, Rodddam AW et al (2004) A prospective study of diet and prostate cancer in Japanese men. Cancer Causes Control 15:911–920. doi:10.1007/s10552-004-1683-y PubMedCrossRefGoogle Scholar
  8. 8.
    Hebert JR, Ghumare SS, Gupta PC (2006) Stage at diagnosis and relative differences in breast and prostate cancer incidence in India: and comparison to the United States. Asian Pac J Cancer Prev 7(6):547–555PubMedGoogle Scholar
  9. 9.
    Thompson IM, Tangen CM, Tolcher A, Crawford ED, Eisenberger M, Moinpour CM (2001) Association of African-American ethnic background with survival in men with metastatic prostate cancer. J Nat Cancer Inst 93:219–225. doi:10.1093/jnci/93.3.219 PubMedCrossRefGoogle Scholar
  10. 10.
    Deutsch E, Maggiorella L, Eschwege P, Bourhis J, Soria JC, Abdulkarim B (2004) Environmental, genetic, and molecular features of prostate cancer. Lancet 5:303–313. doi:10.1016/S1470-2045(04)01468-8 CrossRefGoogle Scholar
  11. 11.
    Gilligan T (2005) Social disparities and prostate cancer: mapping the gaps in our knowledge. Cancer Causes Control 16:45–53. doi:10.1007/s10552-004-1291-x PubMedCrossRefGoogle Scholar
  12. 12.
    Sanderson M, Coker AL, Logan P, Zheng W, Fadden MK (2004) Lifestyle and prostate cancer among older African-Americans and Caucasian men in South Carolina. Cancer Causes Control 15:647–655. doi:10.1023/B:CACO.0000036172.63845.d4 PubMedCrossRefGoogle Scholar
  13. 13.
    Hsieh K, Albersten PC (2003) Populations at high risk for prostate cancer. Urol Clin N Am 30:669–676. doi:10.1016/S0094-0143(03)00058-2 CrossRefGoogle Scholar
  14. 14.
    Faroon OM, Williams M, O’Connor R (1994) A review of the carcinogenicity of chemicals most frequently found at National Priorities List sites. Toxicol Ind Health 10(3):203–230PubMedGoogle Scholar
  15. 15.
    Navarro Silvera SA, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18(1):7–27. doi:10.1007/s10552-006-0057-z PubMedCrossRefGoogle Scholar
  16. 16.
    Bostwick DG, Burke HB, Djakiew D et al (2004) Human prostate cancer risk factors. Cancer 101(10 Suppl):2371–2490. doi:10.1002/cncr.20408 PubMedCrossRefGoogle Scholar
  17. 17.
    Franklin RB, Costello LC (2007) Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 463(2):211–217. doi:10.1016/j.abb.2007.02.033 PubMedCrossRefGoogle Scholar
  18. 18.
    Costello LC, Liu Y, Zou J, Franklin RB (1999) Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem 274:17499–17504 June 18PubMedCrossRefGoogle Scholar
  19. 19.
    Franklin RB, Feng P, Milon B et al (2005) hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 4(32):1–13Google Scholar
  20. 20.
    Iguchi K, Hamatake M, Ishida R et al (1998) Induction of necrosis by zinc in prostate carcinoma cells and identification of proteins increased in association with this induction. Eur J Biochem 253:766–770. doi:10.1046/j.1432-1327.1998.2530766.x PubMedCrossRefGoogle Scholar
  21. 21.
    Rishi I, Baidouri H, Abbasi JA et al (2003) Prostate cancer in African-American men is associated with down-regulation of zinc transporters. Appl Immunohistochem Mol Morphol 11:252–260Google Scholar
  22. 22.
    [ATSDR] Agency for Toxic Substances and Disease Registry (2005) Toxicological profile for zinc. U.S. Department of Health and Human Services, Public Health ServiceGoogle Scholar
  23. 23.
    Environmental Protection Agency (EPA) (1980) Exposure and risk assessment for zinc. In: EPA440481016 PB85212009. U.S. Environmental Protection Agency, Office of Water Regulations and Standards (WH-553), Washington, DCGoogle Scholar
  24. 24.
    Kalbasi M, Racz GJ, Lewen-Rudgers LA (1978) Reaction products and solubility of applied zinc compounds in some Manitoba soils. Soil Sci Soc Am 125:55–64CrossRefGoogle Scholar
  25. 25.
    Apak R (2006) Adsorption of heavy metal ions on soil surfaces and similar substances: theoretical aspects. In: Encyclopedia of surface and colloid science. Taylor and Francis, pp 484–509Google Scholar
  26. 26.
    van der Cruijsen-Koeter IW, Vis AN, Roobol MJ et al (2005) Comparison of screen detected and clinically diagnosed prostate cancer in the European randomized study of screening for prostate cancer, section Rotterdam. J Urol 174(1):121–125. doi:10.1097/01.ju.0000162061.40533.0f PubMedCrossRefGoogle Scholar
  27. 27.
    Environmental Protection Agency (EPA) (1989) Risk assessment guidance for superfund, vol 1, Human health evaluation manual, Part A. Interim Final, Office of Emergency and Remedial Response, DecemberGoogle Scholar
  28. 28.
    Canova JL (1999) Elements in South Carolina inferred background soil and stream sediment samples. S C Geol 41:11–25Google Scholar
  29. 29.
    Clemson University Extension: Agriculture Service Laboratory. http://www.clemson.edu/agsrvlb/index.htm
  30. 30.
    Polednak AP (1997) Stage at diagnosis of prostate cancer in Connecticut by poverty and race. Ethn Dis 7:215–220PubMedGoogle Scholar
  31. 31.
    South Carolina Census Shape File. Obtained from: South Carolina Department of Health and Environmental ControlGoogle Scholar
  32. 32.
    United States Geological Survey (USGS) Frequently Asked Questions concerning NURE HSSR DataGoogle Scholar
  33. 33.
    South Carolina Central Cancer Registry Incidence and Mortality (SCCCR) (2006) Office of Public Health Statistics and Information Services, Department of Health and Environmental ControlGoogle Scholar
  34. 34.
    Chu KC, Tarone RE, Freeman HP (2003) Trends in prostate cancer mortality among black men and white men in the United States. Cancer 97(6):1507–1516. doi:10.1002/cncr.11212 PubMedCrossRefGoogle Scholar
  35. 35.
    Liu L, Cozen W, Bernstein L, Ross RK, Deapen D (2001) Changing relationship between socioeconomic status and prostate cancer incidence. J Natl Cancer Inst 93(9):705–709. doi:10.1093/jnci/93.9.705 PubMedCrossRefGoogle Scholar
  36. 36.
    SCBCB (2008) South Carolina Statistical Abstract 2008. South Carolina Budget and Control Board, Office of Research and Statistics, Columbia, SCGoogle Scholar
  37. 37.
    Rothman KJ, Greenland S (1989) Modern epidemiology, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  38. 38.
    Wilson EB, Hilferty MM (1931) The distribution of chi-square. Proc Natl Acad Sci USA 17:684–688. doi:10.1073/pnas.17.12.684 PubMedCrossRefGoogle Scholar
  39. 39.
    Solymosi N, Reiczigel J, Harnos A et al (2006) A Multitask PostGIS based Vet GIS Framework. In: 1st OIE International Conference Use of GIS in Veterinary Activities, October 2006, Silvi Marina, Abruzzo, Italy. http://epi.univet.hu/portal/sn/kutatas/epidemiologia/terbeli-epidemiologia/betegseg-terkepezes/gisconference/oiegis.pdf
  40. 40.
    Hebert JR, Hurley TG, Olendzki B, Ma Y, Teas J, Hampl JS (1998) Nutritional and socioeconomic factors in relation to prostate cancer mortality: a cross-national study. J Natl Cancer Inst 90:1637–1647. doi:10.1093/jnci/90.21.1637 PubMedCrossRefGoogle Scholar
  41. 41.
    Nelson WG, DeWeese TL, DeMarzo AM (2002) The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Rev 21:13–16CrossRefGoogle Scholar
  42. 42.
    Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85. doi:10.1056/NEJM200007133430201 PubMedCrossRefGoogle Scholar
  43. 43.
    Waalkes MP, Rehm S (1992) Carcinogenicity of oral cadmium in the male-Wistar (WF/NCr) rat: effect of chronic dietary zinc deficiency. Fundam Appl Toxicol 19:5–12. doi:10.1016/0272-0590(92)90089-Z CrossRefGoogle Scholar
  44. 44.
    Vogt TM, Ziegler RG, Graubard BI (2003) Serum selenium and risk of prostate cancer in U.S. blacks and whites. Int J Cancer 103:664–670. doi:10.1002/ijc.10866 PubMedCrossRefGoogle Scholar
  45. 45.
    Elmes ME (1977) Apoptosis in the small intestine of zinc-deficient and fasted rats. J Pathol 123(4):219–223. doi:10.1002/path.1711230404 PubMedCrossRefGoogle Scholar
  46. 46.
    Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P (1999) Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 40(3):200–207. doi:10.1002/(SICI)1097-0045(19990801)40:3<200::AID-PROS8>3.0.CO;2-3PubMedCrossRefGoogle Scholar
  47. 47.
    Achanzar WE, Diwan BA, Liu J, Quader ST, Webber MM, Waalkes MP (2001) Cadmium-induced malignant transformation of human prostate epithelial cells. Cancer Res 61:455–458PubMedGoogle Scholar
  48. 48.
    Lonnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378S–1383SPubMedGoogle Scholar
  49. 49.
    Reed JM, Stitch SR (1973) The uptake of testosterone and zinc in vitro by the human benign hypertrophic prostate. J Endocrinol 58(5):483–486Google Scholar
  50. 50.
    Waalkes MP, Coogan TP, Barter RA (1992) Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Crit Rev Toxicol 22(3,4):175–201PubMedCrossRefGoogle Scholar
  51. 51.
    Oliver MN, Matthews KA, Siadaty M, Hauck FR, Pickle LW (2005) Geographic bias related to geocoding in epidemiologic studies. Int J Health Geogr 4:29. doi:10.1186/1476-072X-4-29 PubMedCrossRefGoogle Scholar
  52. 52.
    Krieger N, Waterman P, Lemieux K, Zierler S, Hogan JW (2001) On the wrong side of the tracts? Evaluating the accuracy of geocoding in public health research. Am J Public Health 91(7):1114–1116PubMedCrossRefGoogle Scholar
  53. 53.
    Le Marchand L, Kolonel LN, Hankin JH, Yoshizawa CN (1989) Relationship of alcohol consumption to diet: a population-based study in Hawaii. Am J Clin Nutr 49:567–572PubMedGoogle Scholar
  54. 54.
    The Nutrition Data System for Research (NDS-R Version 4.03_31) developed by the Nutrition Coordinating Center (NCC), University of Minnesota, Minneapolis, MNGoogle Scholar
  55. 55.
    South Carolina Office of Research and Statistics (2005) South Carolina Rural Health Report. SC Budget and Control Board, Columbia, SCGoogle Scholar
  56. 56.
    Grubesic TH, Matisziw TC (2006) On the use of ZIP codes and ZIP code tabulation areas (ZCTAs) for the spatial analysis of epidemiological data. Int J Health Geogr 5:58. doi:10.1186/1476-072X-5-58 PubMedCrossRefGoogle Scholar
  57. 57.
    Krieger N, Waterman P, Chen JT, Soobader MJ, Subramanian SV, Carson R (2002) Zip code caveat: bias due to spatiotemporal mismatches between zip codes and US census-defined geographic areas—the Public Health Disparities Geocoding Project. Am J Public Health 92(7):1100–1102PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sara E. Wagner
    • 1
    • 2
  • James B. Burch
    • 1
    • 2
  • Jim Hussey
    • 2
  • Tom Temples
    • 3
  • Susan Bolick-Aldrich
    • 4
  • Catishia Mosley-Broughton
    • 4
  • Yuan Liu
    • 2
  • James R. Hebert
    • 1
    • 2
  1. 1.Cancer Prevention and Control ProgramUniversity of South CarolinaColumbiaUSA
  2. 2.Arnold School of Public Health, Department of Epidemiology and BiostatisticsUniversity of South CarolinaColumbiaUSA
  3. 3.Advanced Environmental Solutions, LLCLexingtonUSA
  4. 4.Department of Health and Environmental ControlSouth Carolina Central Cancer RegistryColumbiaUSA

Personalised recommendations