Cancer Causes & Control

, Volume 20, Issue 2, pp 233–242 | Cite as

Influence of birth weight and adult body composition on 17β-estradiol levels in young women

  • Sissi Espetvedt Finstad
  • Aina Emaus
  • Nancy Potischman
  • Emily Barrett
  • Anne-Sofie Furberg
  • Peter T. Ellison
  • Grazyna Jasienska
  • Inger Thune
Original Paper



Estrogens induce cellular proliferation and are associated with an increased risk of breast cancer. Birth weight and adult body weight have independently been associated with both estrogen levels and breast cancer risk. Thus, we hypothesize that low birth weight, in combination with adult overweight, may influence premenopausal 17β-estradiol over an entire menstrual cycle of possible importance for breast cancer.


Among 204 healthy women, aged 25–35 years, who participated in the Norwegian EBBA-I Study, birth weight and age at menarche were assessed. Levels of 17β-estradiol were measured in daily saliva samples over one menstrual cycle using radioimmunoassay (RIA). Measurements of body composition; waist circumference (cm), body mass index (BMI, kg/m2), and total fat percentage (DEXA, %) were assessed. Fasting blood samples were drawn, and serum concentrations of lipids and hormones were determined.


The participating women had mean birth weight of 3,389 g and age at menarche 13.1 years. Women within the highest tertile of birth weight had the lowest 17β-estradiol throughout the menstrual cycle (p = 0.03), and they tended to have a later age at menarche (p = 0.06). When we looked into birth weight in combination with adult-attained weight, we found that women with lower birth weights, combined with excess weight during adulthood, had higher levels of free 17β-estradiol over an entire menstrual cycle compared with women with high birth weights and adult overweight. Women with birth weights <3,530 g, who later developed excess body weight (waist ≥ 84 cm), showed 33% higher 17β-estradiol concentrations over a menstrual cycle compared with women with higher birth weights (≥3,530 g) and adult excess body weight (p = 0.03). The association was even more pronounced in women with birth weights <3,220 g, early age at menarche (<12 years), and adult overweight.


Our findings support variation of premenopausal levels of 17β-estradiol in response to birth weight and energy status in adult life, suggesting that women with low birth weight in combination with adult overweight are put at risk for higher estradiol levels throughout menstrual cycles, which is of possible importance for breast cancer risk.


Birth weight Adult body composition Energy balance 17β-estradiol 



We acknowledge each woman who participated in the Norwegian EBBA-I study, our nurse Gunn Knudsen, Anna Kirsti Jenssen and Sissel Andersen. The study was supported by a grant from the Norwegian Cancer Society (49 258, 05087); Foundation for the Norwegian Health and Rehabilitation Organizations (59010-2000/2001/2002); Aakre Foundation (5695–2000, 5754–2002), and Health Region East.


  1. 1.
    Forsdahl A (2002) Observations throwing light on the high mortality in the county of Finnmark. Is the high mortality today a late effect of very poor living conditions in childhood and adolescence? 1973. Int J Epidemiol 31(2):302–308. doi:10.1093/ije/31.2.302 PubMedCrossRefGoogle Scholar
  2. 2.
    Barker DJ (1998) In utero programming of chronic disease. Clin Sci (Lond) 95(2):115–128. doi:10.1042/CS19980019 CrossRefGoogle Scholar
  3. 3.
    Trichopoulos D, Adami HO, Ekbom A, Hsieh CC, Lagiou P (2008) Early life events and conditions and breast cancer risk: from epidemiology to etiology. Int J Cancer 122(123):481–485. doi:10.1002/ijc.23303 PubMedCrossRefGoogle Scholar
  4. 4.
    Romundstad PR, Vatten LJ, Nilsen TI, Holmen TL, Hsieh CC, Trichopoulos D et al (2003) Birth size in relation to age at menarche and adolescent body size: implications for breast cancer risk. Int J Cancer 105(3):400–403. doi:10.1002/ijc.11103 PubMedCrossRefGoogle Scholar
  5. 5.
    Barker DJ, Forsen T, Eriksson JG, Osmond C (2002) Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J Hypertens 20(10):1951–1956. doi:10.1097/00004872-200210000-00013 PubMedCrossRefGoogle Scholar
  6. 6.
    Jasienska G, Ziomkiewicz A, Lipson SF, Thune I, Ellison PT (2006) High ponderal index at birth predicts high estradiol levels in adult women. Am J Hum Biol 18(1):133–140. doi:10.1002/ajhb.20462 PubMedCrossRefGoogle Scholar
  7. 7.
    Ekbom A, Erlandsson G, Hsieh C, Trichopoulos D, Adami HO, Cnattingius S (2000) Risk of breast cancer in prematurely born women. J Natl Cancer Inst 92(10):840–841. doi:10.1093/jnci/92.10.840 PubMedCrossRefGoogle Scholar
  8. 8.
    Bernstein L (2002) Epidemiology of endocrine-related risk factors for breast cancer. J Mammary Gland Biol Neoplasia 7(1):3–15. doi:10.1023/A:1015714305420 PubMedCrossRefGoogle Scholar
  9. 9.
    Eliassen AH, Missmer SA, Tworoger SS, Spiegelman D, Barbieri RL, Dowsett M et al (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98(19):1406–1415PubMedGoogle Scholar
  10. 10.
    Troisi R, Hatch EE, Titus-Ernstoff L, Palmer JR, Hyer M, Strohsnitter WC et al (2006) Birth weight and breast cancer risk. Br J Cancer 94(11):1734–1737PubMedGoogle Scholar
  11. 11.
    Michels KB, Willett WC (2004) Breast cancer–early life matters. N Engl J Med 351(16):1679–1681. doi:10.1056/NEJMe048229 PubMedCrossRefGoogle Scholar
  12. 12.
    Michels KB, Trichopoulos D, Robins JM, Rosner BA, Manson JE, Hunter DJ et al (1996) Birthweight as a risk factor for breast cancer. Lancet 348(9041):1542–1546. doi:10.1016/S0140-6736(96)03102-9 PubMedCrossRefGoogle Scholar
  13. 13.
    Park SK, Kang D, McGlynn KA, Garcia-Closas M, Kim Y, Yoo KY et al (2008) Intrauterine environments and breast cancer risk: meta-analysis and systematic review. Breast Cancer Res 10(1):R8. doi:10.1186/bcr1850 PubMedCrossRefGoogle Scholar
  14. 14.
    Trichopoulos D (1990) Is breast cancer initiated in utero? Epidemiology 1(2):95–96PubMedCrossRefGoogle Scholar
  15. 15.
    Lucas A, Fewtrell MS, Cole TJ (1999) Fetal origins of adult disease-the hypothesis revisited. BMJ 319(7204):7245–7249Google Scholar
  16. 16.
    dos SS I, De Stavola BL, Hardy RJ, Kuh DJ, McCormack VA, Wadsworth ME (2004) Is the association of birth weight with premenopausal breast cancer risk mediated through childhood growth? Br J Cancer 91(3):519–524. doi:10.1038/sj.bjc.6601972 CrossRefGoogle Scholar
  17. 17.
    Jasienska G, Thune I, Ellison PT (2006) Fatness at birth predicts adult susceptibility to ovarian suppression: an empirical test of the Predictive Adaptive Response hypothesis. Proc Natl Acad Sci U S A 103(34):12759–12762. doi:10.1073/pnas.0605488103 PubMedCrossRefGoogle Scholar
  18. 18.
    Dunger DB, Ahmed ML, Ong KK (2006) Early and late weight gain and the timing of puberty. Mol Cell Endocrinol 254–255:140–145. doi:10.1016/j.mce.2006.04.003 PubMedCrossRefGoogle Scholar
  19. 19.
    van Weissenbruch MM, Delemarre-van de Waal HA (2006) Early influences on the tempo of puberty. Horm Res 65(Suppl 3):105–111. doi:10.1159/000091514 PubMedCrossRefGoogle Scholar
  20. 20.
    Kirchengast S, Gruber D, Sator M, Huber J (1998) Impact of the age at menarche on adult body composition in healthy pre- and postmenopausal women. Am J Phys Anthropol 105(1):9–20. doi:10.1002/(SICI)1096-8644(199801)105:1&lt;9::AID-AJPA2&gt;3.0.CO;2-T PubMedCrossRefGoogle Scholar
  21. 21.
    Adair LS (2001) Size at birth predicts age at menarche. Pediatrics 107(4):E59. doi:10.1542/peds.107.4.e59 PubMedCrossRefGoogle Scholar
  22. 22.
    Chavarro JE, Peterson KE, Sobol AM, Wiecha JL, Gortmaker SL (2005) Effects of a school-based obesity-prevention intervention on menarche (United States). Cancer Causes Control 16(10):1245–1252. doi:10.1007/s10552-005-0404-5 PubMedCrossRefGoogle Scholar
  23. 23.
    Pichard C, Plu-Bureau G, Neves-E Castro, Gompel A (2008) Insulin resistance, obesity and breast cancer risk. Maturitas 60(1):19–30Google Scholar
  24. 24.
    Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(1):61–73. doi:10.1056/NEJMra0708473 PubMedCrossRefGoogle Scholar
  25. 25.
    Jasienska G, Kapiszewska M, Ellison PT, Kalemba-Drozdz M, Nenko I, Thune I et al (2006) CYP17 genotypes differ in salivary 17-beta estradiol levels: a study based on hormonal profiles from entire menstrual cycles. Cancer Epidemiol Biomarkers Prev 15(11):2131–2135. doi:10.1158/1055-9965.EPI-06-0450 PubMedCrossRefGoogle Scholar
  26. 26.
    Furberg AS, Jasienska G, Bjurstam N, Torjesen PA, Emaus A, Lipson SF et al (2005) Metabolic and hormonal profiles: HDL cholesterol as a plausible biomarker of breast cancer risk. The Norwegian EBBA Study. Cancer Epidemiol Biomarkers Prev 14(1):33–40PubMedGoogle Scholar
  27. 27.
    Lillegaard IT, Overby NC, Andersen LF (2005) Can children and adolescents use photographs of food to estimate portion sizes? Eur J Clin Nutr 59(4):611–617. doi:10.1038/sj.ejcn.1602119 PubMedCrossRefGoogle Scholar
  28. 28.
    Andersen LF, Øverby N, Lillegaard ITL (2003) Is there any difference in what children are eating during weekends and the rest of the week? Barn 2–3:89–98Google Scholar
  29. 29.
    Lipson SF, Ellison PT (1996) Comparison of salivary steroid profiles in naturally occurring conception and non-conception cycles. Hum Reprod 11(10):2090–2096PubMedGoogle Scholar
  30. 30.
    Emaus A, Espetvedt S, Veierod MB, Ballard-Barbash R, Furberg AS, Ellison PT et al (2008) 17-beta-estradiol in relation to age at menarche and adult obesity in premenopausal women. Hum Reprod 23(4):919–927PubMedCrossRefGoogle Scholar
  31. 31.
    Tworoger SS, Eliassen AH, Missmer SA, Baer H, Rich-Edwards J, Michels KB et al (2006) Birthweight and body size throughout life in relation to sex hormones and prolactin concentrations in premenopausal women. Cancer Epidemiol Biomarkers Prev 15(12):2494–2501. doi:10.1158/1055-9965.EPI-06-0671 PubMedCrossRefGoogle Scholar
  32. 32.
    Lau C, Rogers JM (2004) Embryonic and fetal programming of physiological disorders in adulthood. Birth Defects Res C Embryo Today 72(4):300–312. doi:10.1002/bdrc.20029 PubMedCrossRefGoogle Scholar
  33. 33.
    Ahlgren M, Sorensen T, Wohlfahrt J, Haflidadottir A, Holst C, Melbye M (2003) Birth weight and risk of breast cancer in a cohort of 106, 504 women. Int J Cancer 107(6):997–1000. doi:10.1002/ijc.11481 PubMedCrossRefGoogle Scholar
  34. 34.
    Vatten LJ, Nilsen TI, Tretli S, Trichopoulos D, Romundstad PR (2005) Size at birth and risk of breast cancer: prospective population-based study. Int J Cancer 114(3):461–464. doi:10.1002/ijc.20726 PubMedCrossRefGoogle Scholar
  35. 35.
    Mellemkjaer L, Olsen ML, Sorensen HT, Thulstrup AM, Olsen J, Olsen JH (2003) Birth weight and risk of early-onset breast cancer (Denmark). Cancer Causes Control 14(1):61–64. doi:10.1023/A:1022570305704 PubMedCrossRefGoogle Scholar
  36. 36.
    Leong NM, Mignone LI, Newcomb PA, Titus-Ernstoff L, Baron JA, Trentham-Dietz A et al (2003) Early life risk factors in cancer: the relation of birth weight to adult obesity. Int J Cancer 103(6):789–791. doi:10.1002/ijc.10886 PubMedCrossRefGoogle Scholar
  37. 37.
    Newby PK, Dickman PW, Adami HO, Wolk A (2005) Early anthropometric measures and reproductive factors as predictors of body mass index and obesity among older women. Int J Obes (Lond) 29(9):1084–1092. doi:10.1038/sj.ijo.0802996 CrossRefGoogle Scholar
  38. 38.
    Cooper C, Kuh D, Egger P, Wadsworth M, Barker D (1996) Childhood growth and age at menarche. Br J Obstet Gynaecol 103(8):814–817PubMedGoogle Scholar
  39. 39.
    Persson I, Ahlsson F, Ewald U, Tuvemo T, Qingyuan M, von Rosen D et al (1999) Influence of perinatal factors on the onset of puberty in boys and girls: implications for interpretation of link with risk of long term diseases. Am J Epidemiol 150(7):747–755PubMedGoogle Scholar
  40. 40.
    de ZF , Ibanez L (2004) Novel insights into the endocrine-metabolic and reproductive consequences of prenatal growth restraint in girls. Girls-born-small become women-born-small. Verh K Acad Geneeskd Belg 66(5–6):353–382Google Scholar
  41. 41.
    Barker DJ (2005) The developmental origins of insulin resistance. Horm Res 64(Suppl 3):2–7. doi:10.1159/000089311 PubMedCrossRefGoogle Scholar
  42. 42.
    Ballard-Barbash R (1994) Anthropometry and breast cancer. Body size–a moving target. Cancer 74(3 Suppl):1090–1100. doi:10.1002/1097-0142(19940801)74:3+<1090::AID-CNCR2820741518>3.0.CO;2-X PubMedCrossRefGoogle Scholar
  43. 43.
    Sieri S, Pala V, Brighenti F, Pellegrini N, Muti P, Micheli A et al (2007) Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian prospective cohort study. Am J Clin Nutr 86(4):1160–1166PubMedGoogle Scholar
  44. 44.
    IARC (2002) IARC Handbook of Cancer Prevention: weight control and physical activity. International Agency for Research on Cancer (IARC), LyonGoogle Scholar
  45. 45.
    Barbieri RL, Smith S, Ryan KJ (1988) The role of hyperinsulinemia in the pathogenesis of ovarian hyperandrogenism. Fertil Steril 50(2):197–212PubMedGoogle Scholar
  46. 46.
    Phillips DI, Barker DJ, Hales CN, Hirst S, Osmond C (1994) Thinness at birth and insulin resistance in adult life. Diabetologia 37(2):150–154. doi:10.1007/s001250050086 PubMedCrossRefGoogle Scholar
  47. 47.
    Jeffreys M, Lawlor DA, Galobardes B, McCarron P, Kinra S, Ebrahim S et al (2006) Lifecourse weight patterns and adult-onset diabetes: the Glasgow Alumni and British Women’s Heart and Health studies. Int J Obes (Lond) 30(3):507–512. doi:10.1038/sj.ijo.0803161 CrossRefGoogle Scholar
  48. 48.
    Jasienska G, Jasienski M (2008) Interpopulation, interindividual, intercycle, and intracycle natural variation in progesterone levels: a quantitative assessment and implications for population studies. Am J Hum Biol 20(1):35–42PubMedCrossRefGoogle Scholar
  49. 49.
    Ellison PT, Lipson SF (1999) Salivary estradiol–a viable alternative? Fertil Steril 72(5):951–952PubMedCrossRefGoogle Scholar
  50. 50.
    Must A, Phillips SM, Naumova EN, Blum M, Harris S, wson-Hughes B et al (2002) Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol 155(7):672–679PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sissi Espetvedt Finstad
    • 1
  • Aina Emaus
    • 1
  • Nancy Potischman
    • 2
  • Emily Barrett
    • 3
  • Anne-Sofie Furberg
    • 4
    • 5
  • Peter T. Ellison
    • 6
  • Grazyna Jasienska
    • 7
  • Inger Thune
    • 1
    • 8
  1. 1.Department of OncologyUllevål University HospitalOsloNorway
  2. 2.National Cancer Institute (NCI)BethesdaUSA
  3. 3.Center for Healthier Children, Families and CommunitiesUniversity of California––Los AngelesLos AngelesUSA
  4. 4.Institute of Community Medicine, Faculty of MedicineUniversity of TromsøTromsøNorway
  5. 5.Department of Microbiology and Infection ControlUniversity Hospital North NorwayTromsøNorway
  6. 6.Department of AnthropologyHarvard UniversityCambridgeUSA
  7. 7.Department of Epidemiology and Population StudiesJagiellonian UniversityKrakowPoland
  8. 8.The Research Council of NorwayOsloNorway

Personalised recommendations