Cancer Causes & Control

, Volume 19, Issue 10, pp 1305–1318 | Cite as

Race/ethnicity and breast cancer estrogen receptor status: impact of class, missing data, and modeling assumptions

  • Nancy Krieger
  • Jarvis T. Chen
  • James H. Ware
  • Afamia Kaddour
Original Paper



To test whether reported associations between race/ethnicity and breast cancer estrogen receptor (ER) status are inflated due to missing ER data, lack of socioeconomic data, and use of the odds ratio (OR) rather than the prevalence ratio (PR).


We geocoded and added census tract socioeconomic data to all cases of primary invasive breast cancer (n = 42,420) among women diagnosed between 1998 and 2002 in two California cancer registries (San Francisco Bay Area; Los Angeles County) and analyzed the data using log binomial regression.


Adjusting for socioeconomic position and tumor characteristics, in models using the imputed data, reduced the PR for the black versus white excess risk of being ER− from 1.76 (95% CI: 1.66, 1.86; adjusted for age and catchment area) to 1.47 (95% CI: 1.38, 1.56). The latter parameter estimate was 16% greater (i.e., 1.56) in models excluding women with missing ER data, and was 43% greater when estimated using the OR (i.e., 1.82).


Studies on race/ethnicity and ER status that fail to account for missing data and socioeconomic data and report the OR are likely to yield inflated estimates of racial/ethnic disparities in ER status.


Breast cancer estrogen receptor status Health disparities Epidemiology Race/ethnicity Socioeconomic position Poverty Black  Hispanic Asian and Pacific Islander 


  1. 1.
    Althuis MD, Fergenbaumm JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME (2004) Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 13:1558–1568PubMedGoogle Scholar
  2. 2.
    Ademuyiwa FO, Olopade OI (2003) Racial differences in genetic factors associated with breast cancer. Cancer Metastasis Rev 22:47–53. doi:10.1023/A:1022259901319 PubMedCrossRefGoogle Scholar
  3. 3.
    Chlebowski RT, Chen Z, Anderson GL et al (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97:439–448PubMedCrossRefGoogle Scholar
  4. 4.
    Stanford JL, Szklo M, Brinton LA (1986) Estrogen receptors and breast cancer. Epidemiol Rev 8:42–59PubMedGoogle Scholar
  5. 5.
    Morris GJ, Naidu S, Topham AK et al (2007) Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients—a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results Database. Cancer 110:876–884. doi:10.1002/cncr.22836 PubMedCrossRefGoogle Scholar
  6. 6.
    Watlington AT, Byers T, Mouchawar J, Sauaia A, Ellis J (2007) Does having insurance affect differences in clinical presentation between Hispanic and non-Hispanic white women with breast cancer? Cancer 109:2093–2099. doi:10.1002/cncr.22640 PubMedCrossRefGoogle Scholar
  7. 7.
    Woods SE, Luking R, Atkins B, Engel A (2006) Association of race and breast cancer stage. J Natl Med Assoc 98:683–686PubMedGoogle Scholar
  8. 8.
    Cunningham JE, Butler WM (2004) Racial disparities in female breast cancer in South Carolina: clinical evidence for a biological basis. Breast Cancer Res Treat 88:161–176. doi:10.1007/s10549-004-0592-9 PubMedCrossRefGoogle Scholar
  9. 9.
    Porter PL, Lund MJ, Lin MG et al (2004) Racial differences in the expression of cell cycle regulatory proteins in breast carcinoma - Study of young African American and white women in Atlanta, Georgia. Cancer 100:2533–2542. doi:10.1002/cncr.20279 PubMedCrossRefGoogle Scholar
  10. 10.
    Gill KS, Yankaskas BC (2004) Screening mammography performance and cancer detection among black women and white women in community practice. Cancer 100:139–148. doi:10.1002/cncr.11878 PubMedCrossRefGoogle Scholar
  11. 11.
    Ziv E, Tice J, Smith-Bindman R, Shepherd J, Cummings S, Kerlikowske K (2004) Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomarker Prev 13:2090–2095Google Scholar
  12. 12.
    Althuis MD, Brogan DD, Coates RJ et al (2003) Breast cancers among very young premenopausal women (United States). Cancer Causes Control 14:151–160. doi:10.1023/A:1023006000760 PubMedCrossRefGoogle Scholar
  13. 13.
    Li CI, Malone KE, Daling JR (2002) Differences in breast cancer hormone receptor status and histology by race and ethnicity among women 50 years of age and older. Cancer Epidemiol Biomarker Prev 11:601–607Google Scholar
  14. 14.
    Miller BA, Hankey BF, Thomas TL (2002) Impact of sociodemographic factors, hormone receptor status, and tumor grade on ethnic differences in tumor stage and size for breast cancer in US women. Am J Epidemiol 155:534–545. doi:10.1093/aje/155.6.534 PubMedCrossRefGoogle Scholar
  15. 15.
    Furberg H, Millikan R, Dressler L, Newman B, Geradts J (2001) Tumor characteristics in African American and white women. Breast Cancer Res Treat 68:33–43. doi:10.1023/A:1017994726207 PubMedCrossRefGoogle Scholar
  16. 16.
    Elledge RM, Clark GM, Chamness GC, Osborne CK (1994) Tumor biologic factors and breast-cancer prognosis among White, Hispanic, and Black women in the United-States. J Natl Cancer Inst 86:705–712. doi:10.1093/jnci/86.9.705 PubMedCrossRefGoogle Scholar
  17. 17.
    Harlan LC, Coates RJ, Block G et al (1993) Estrogen receptor status and dietary intakes in breast cancer patients. Epidemiology 4:25–31. doi:10.1097/00001648-199301000-00006 PubMedCrossRefGoogle Scholar
  18. 18.
    Stanford JL, Greenberg RS (1989) Breast cancer incidence in young women by estrogen receptor status and race. Am J Public Health 79:71–73PubMedGoogle Scholar
  19. 19.
    Stanford JL, Szklo M, Boring CC et al (1987) A case-control study of breast cancer stratified by estrogen receptor status. Am J Epidemiol 125:184–194PubMedGoogle Scholar
  20. 20.
    Martinez ME, Nielson CM, Nagle R, Lopez AM, Kim C, Thompson P (2007) Breast cancer among Hispanic and non-Hispanic white women in Arizona. J Health Care Poor Underserved 18:130–145. doi:10.1353/hpu.2007.0112 PubMedCrossRefGoogle Scholar
  21. 21.
    Menes TS, Ozao J, Kim U (2007) Breast cancer and ethnicity: strong association between reproductive risk factors and estrogen receptor status in Asian patients—a retrospective study. Breast J 13:352–358. doi:10.1111/j.1524-4741.2007.00442.x PubMedCrossRefGoogle Scholar
  22. 22.
    Gordon N (2003) Socioeconomic factors and breast cancer in black and white Americans. Cancer Metastasis Rev 22:55–65. doi:10.1023/A:1022212018158 PubMedCrossRefGoogle Scholar
  23. 23.
    Elmore JG, Moceri VM, Carter D, Larson EB (1998) Breast carcinoma tumor characteristics in black and white women. Cancer 83:2509–2515. doi:10.1002/(SICI)1097-0142(19981215)83:12<2509::AID-CNCR15>3.0.CO;2-VGoogle Scholar
  24. 24.
    Krieger N, van den Eeden SK, Zava D, Okamoto A (1997) Race/ethnicity, social class, and prevalence of breast cancer prognostic biomarkers: a study of white, black, and Asian women in the San Francisco Bay Area. Ethn Dis 7:137–149PubMedGoogle Scholar
  25. 25.
    Weiss SE, Tartter PI, Ahmed S et al (1995) Ethnic differences in risk and prognostic factors for breast cancer. Cancer 76:268–274. doi: 10.1002/1097-0142(19950715)76:2<268::AID-CNCR2820760217>3.0.CO;2-1Google Scholar
  26. 26.
    Gordon NH (1995) Association of education and income with estrogen receptor status in primary breast cancer. Am J Epidemiol 142:796–803PubMedGoogle Scholar
  27. 27.
    Chen VW, Correa P, Kurman RJ et al (1994) Histological characteristics of breast carcinoma in blacks and whites. Cancer Epidemiol Biomarkers Prev 3:127–135PubMedGoogle Scholar
  28. 28.
    Ansell D, Whitman S, Lipton R, Cooper R (1993) Race, income, and survival from breast cancer at two public hospitals. Cancer 72:2974–2978. doi:10.1002/1097-0142(19931115)72:10<2974::AID-CNCR2820721019>3.0.CO;2-MGoogle Scholar
  29. 29.
    Crowe JP Jr, Gordon NH, Hubay CA, Pearson OH, Marshall JS, McGuire WL (1986) The interaction of estrogen receptor status and race in predicting prognosis for stage I breast cancer patients. Surgery 100:599–605PubMedGoogle Scholar
  30. 30.
    Schafer JL (1997) Analysis of incomplete multivariate data. Chapman and Hall, Boca RatonGoogle Scholar
  31. 31.
    Greenland S, Finkle WD (1995) A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol 142:1255–1264PubMedGoogle Scholar
  32. 32.
    Rubin D (1976) Inference and missing data. Biometrika 63:581–592. doi:10.1093/biomet/63.3.581 CrossRefGoogle Scholar
  33. 33.
    Haggstrom DA, Quale C, Smith-Bindman R (2005) Differences in the quality of breast cancer care among vulnerable populations. Cancer 104:2347–2358. doi:10.1002/cncr.21443 PubMedCrossRefGoogle Scholar
  34. 34.
    Cross CK, Harris J, Recht A (2002) Race, socioeconomic status, and breast carcinoma in the U.S: what have we learned from clinical studies. Cancer 95:1988–1999. doi:10.1002/cncr.10830 PubMedCrossRefGoogle Scholar
  35. 35.
    Hwang ES, Chew T, Shiboski S, Farren G, Benz CC, Wrensch M (2005) Risk factors for estrogen receptor-positive breast cancer. Arch Surg 140:58–62. doi:10.1001/archsurg.140.1.58 PubMedCrossRefGoogle Scholar
  36. 36.
    Thomson CS, Hole DJ, Twelves CJ, Brewster DH, Black RJ, Scottish Cancer Therapy Network (2001) Prognostic factors in women with breast cancer: distribution by socioeconomic status and effect on differences in survival. J Epidemiol Community Health 55:308–315. doi:10.1136/jech.55.5.308 PubMedCrossRefGoogle Scholar
  37. 37.
    Krieger N (2008) Hormone therapy and the rise and perhaps fall of US breast cancer incidence rates: critical reflections. Int J Epidemiol 37:627–637. doi:10.1093/ije/dyn055 PubMedCrossRefGoogle Scholar
  38. 38.
    Krieger N (2005) Stormy weather: “race”, gene expression, and the science of health disparities. Am J Public Health 95:2155–2160. doi:10.2105/AJPH.2005.067108 PubMedCrossRefGoogle Scholar
  39. 39.
    Krieger N (2003) Does racism harm health? did child abuse exist before 1962?—on explicit questions, critical science, and current controversies: an ecosocial perspective. Am J Public Health 93:194–199PubMedGoogle Scholar
  40. 40.
    Ernst W, Harris B (eds) (1999) Race, science, and medicine, 1700–1960. Routledge, LondonGoogle Scholar
  41. 41.
    Krieger N (1994) Epidemiology and the web of causation: has anyone seen the spider? Soc Sci Med 39:887–903. doi:10.1016/0277-9536(94)90202-X PubMedCrossRefGoogle Scholar
  42. 42.
    Krieger N (2004) Ecosocial theory. In: Anderson N (ed) Encyclopedia of health and behavior. Sage, Thousand Oaks, CA, pp 292–294Google Scholar
  43. 43.
    Krieger N (2008) What’s level got to do with it?—proximal, distal, and the politics of causation. Am J Public Health 98:221–230. doi:10.2105/AJPH.2007.111278 PubMedCrossRefGoogle Scholar
  44. 44.
    Davies HT, Crombie IK, Tavakoli M (1998) When can odds ratios mislead? BMJ 316:989–991PubMedGoogle Scholar
  45. 45.
    Zocchetti C, Consonni D, Bertazzi PA (1997) Relationship between prevalence rate ratios and odds ratios in cross-sectional studies. Int J Epidemiol 26:220–223. doi:10.1093/ije/26.1.220 PubMedCrossRefGoogle Scholar
  46. 46.
    Greenland S, Thomas DC, Morgenstern H (1986) The rare-disease assumption revisited: a critique of “estimators of relative risk for case-control studies”. Am J Epidemiol 124:869–883PubMedGoogle Scholar
  47. 47.
    Northern California Cancer Center (2008) Accessed 22 May 2008
  48. 48.
  49. 49.
    Krieger N, Chen JT, Waterman PD, Rehkopf DH, Yin R, Coull BA (2006) Race/ethnicity and changing US socioeconomic gradients in breast cancer incidence: California and Massachusetts, 1978–2002. Cancer Causes Control 17:217–226. doi:10.1007/s10552-005-0408-1 PubMedCrossRefGoogle Scholar
  50. 50.
    US Office of Management and Budget (2008) Revisions to the standards for the classification of federal data on race and ethnicity. Federal register notice, October 30, 1997. Accessed 22 May 2008
  51. 51.
    Stewart SL, Swallen KC, Glaser SL, Horn-Ross PL, West DW (1998) Adjustment of cancer incidence rates for ethnic misclassification. Biometrics 54:774–781. doi:10.2307/3109783 PubMedCrossRefGoogle Scholar
  52. 52.
    Gomez SL, Kelsey JL, Glaser SL, Lee MM, Sidney S (2005) Inconsistencies between self-reported ethnicity and ethnicity recorded in a health maintenance organization. Ann Epidemiol 15:71–79. doi:10.1016/j.annepidem.2004.03.002 PubMedCrossRefGoogle Scholar
  53. 53.
    Stewart SL, Swallen KC, Glaser SL, Horn-Ross PL, West DW (1999) Comparison of methods for classifying Hispanic ethnicity in a population-based cancer registry. Am J Epidemiol 149:1063–1071PubMedGoogle Scholar
  54. 54.
    Swallen KC, West DW, Stewart SL, Glaser SL, Horn Ross PL (1997) Predictors of misclassification of Hispanic ethnicity in a population-based cancer registry. Ann Epidemiol 7:200–206. doi:10.1016/S1047-2797(96)00154-8 PubMedCrossRefGoogle Scholar
  55. 55.
    Clegg LX, Reichman ME, Hankey BF et al (2007) Quality of race, Hispanic ethnicity, and immigrant status in population-based cancer registry data: implications for health disparity studies. Cancer Causes Control 18:177–187PubMedCrossRefGoogle Scholar
  56. 56.
    Krieger N, Waterman P, Lemieux K, Zierler S, Hogan JW (2001) On the wrong side of the tracts? Evaluating the accuracy of geocoding in public health research. Am J Public Health 91:1114–1116PubMedGoogle Scholar
  57. 57.
    Krieger N, Chen JT, Waterman PD, Rehkopf DH, Subramanian SV (2005) Painting a truer picture of US socioeconomic and racial/ethnic health inequalities: the Public Health Disparities Geocoding Project. Am J Public Health 95:312–323. doi:10.2105/AJPH.2003.032482 PubMedCrossRefGoogle Scholar
  58. 58.
    Krieger N, Chen JT, Waterman PD, Rehkopf DH, Subramanian SV (2003) Race/ethnicity, gender, and monitoring socioeconomic gradients in health: a comparison of area-based socioeconomic measures—The Public Health Disparities Geocoding Project. Am J Public Health 93:1655–1671PubMedGoogle Scholar
  59. 59.
    Krieger N, Chen JT, Waterman PD, Soobader MJ, Subramanian SV, Carson R (2002) Geocoding and monitoring of US socioeconomic inequalities in mortality and cancer incidence: does the choice of area-based measure and geographic level matter?: The Public Health Disparities Geocoding Project. Am J Epidemiol 156:471–482. doi:10.1093/aje/kwf068 PubMedCrossRefGoogle Scholar
  60. 60.
    US Bureau of the Census. Poverty areas (2008) Accessed 22 May 2008.61
  61. 61.
    King G, Honaker J, Joseph A, Scheve K (2001) Analyzing incomplete political science data: an alternative algorithm for multiple imputation. Am Pol Sci Review 95: 49–69Google Scholar
  62. 62.
    Spiegelman D, Hertzmark E (2005) Easy SAS calculations for risk or prevalence ratios or differences. Am J Epidemiol 162:199–200. doi:10.1093/aje/kwi188 PubMedCrossRefGoogle Scholar
  63. 63.
    Greenland S (2004) Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol 160:301–305. doi:10.1093/aje/kwh221 PubMedCrossRefGoogle Scholar
  64. 64.
    McNutt LA, Wu C, Xue X, Hafner JP (2003) Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol 157:940–943. doi:10.1093/aje/kwg074 PubMedCrossRefGoogle Scholar
  65. 65.
    Skov T, Deddens J, Petersen MR, Endahl L (1998) Prevalence proportion ratios: estimation and hypothesis testing. Int J Epidemiol 27:91–95. doi:10.1093/ije/27.1.91 PubMedCrossRefGoogle Scholar
  66. 66.
    SAS Institute (2001) SAS language reference, Version 8. SAS Institute, Cary, NC Google Scholar
  67. 67.
    Krieger N, Williams D, Moss N (1997) Measuring social class in US public health research: concepts, methodologies and guidelines. Annu Rev Public Health 18:341–378. doi:10.1146/annurev.publhealth.18.1.341 PubMedCrossRefGoogle Scholar
  68. 68.
    Davey Smith G (2000) Learning to live with complexity: ethnicity, socioeconomic position, and health in Britain and the United States. Am J Public Health 90:1694–1698Google Scholar
  69. 69.
    Galobardes B, Lynch J, Davey Smith G (2007) Measuring socioeconomic position in health research. Br Med J 81–82:21–37Google Scholar
  70. 70.
    Goodman AH (2000) Why genes don’t count (for racial differences in health). Am J Public Health 90:1699–1702PubMedCrossRefGoogle Scholar
  71. 71.
    Parra EJ, Kittles RA, Shriver MD (2004) Implications of correlations between skin color and genetic ancestry for biomedical research. Nature Genetics 36(suppl):S54–S60. doi:10.1038/ng1440 Google Scholar
  72. 72.
    Feldman MW, Lewontin RC, King MC (2003) Race: a genetic melting-pot. Nature 424:374. doi:10.1038/424374a PubMedCrossRefGoogle Scholar
  73. 73.
    Fowler AM, Alarid ET (2007) Amping up estrogens receptors in breast cancer. Breast Cancer Res 9:305 (doi:10.1186/box1748). doi:10.1186/bcr1748
  74. 74.
    Zhu K, Bernard LJ, Levine RS, Williams SM (1997) Estrogen receptor status of breast cancer: a marker of different stages of tumor or different entities of the disease? Med Hypotheses 49:69–75. doi:10.1016/S0306-9877(97)90255-3 PubMedCrossRefGoogle Scholar
  75. 75.
    Petitti D (2004) Commentary: hormone replacement therapy and coronary heart disease: four lessons. Int J Epidemiol 33:461–463. doi: 10.1093/ije/dyh192 Google Scholar
  76. 76.
    Lawlor DA, Davey Smith G, Ebrahim S (2004) Commentary: The hormone replacement-coronary heart disease conundrum: is this the death of observational epidemiology? Int J Epidemiol 33:464–467. doi:10.1093/ije/dyh124 PubMedCrossRefGoogle Scholar
  77. 77.
    Krieger N (2007) Why epidemiologists cannot afford to ignore poverty. Epidemiology 18:658–663PubMedGoogle Scholar
  78. 78.
    Prentice RL, Chlebowski RT, Stefanick ML, Mansons JE, Langer RD, Pettinger M, Hendrix SL, Hubbell FA, Kooperberg C, Kuller LH, Lane DS, McTiernan A, O’Sullivan MJ, Rossouw JE, Anderson GL (2008). Conjugated equine estrogens and breast cancer risk in the Women’s Health Initiative clinical trial and observational study. Am J Epidemiol 167:1407–1415. doi:10.1093/aje/kwn090 PubMedCrossRefGoogle Scholar
  79. 79.
    Clarke CA, Glaser SL (2007) Declines in breast cancer after the WHI: apparent impact of hormone therapy. Cancer Causes Control 18:847–852. doi:10.1007/s10552-007-9029-1 PubMedCrossRefGoogle Scholar
  80. 80.
    Ravdin PM, Cronin KA, Howlader N, Berg CD, Chlebowski RT, Feuer EJ, Edwards BK, Berry DA (2007) The decrease in breast-cancer incidence in 2003 in the United States. New Engl J Med 356:1670–1674. doi:10.1056/NEJMsr070105 PubMedCrossRefGoogle Scholar
  81. 81.
    Kim S, Egerter S, Cubbin C, Takahashi ER, Braveman P (2007) Potential implications of missing income data in population-based surveys: an example from a postpartum survey in California. Public Health Reports 122:753–764PubMedGoogle Scholar
  82. 82.
    Chen JT, Kaddour A, Krieger N (2008) Re: Kim et al, “Potential Implications of missing income data in population-based surveys”. Public Health Reports 123:260PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nancy Krieger
    • 1
  • Jarvis T. Chen
    • 2
  • James H. Ware
    • 3
  • Afamia Kaddour
    • 4
  1. 1.Department of Society, Human Development and HealthHarvard School of Public HealthBostonUSA
  2. 2.Department of Society, Human Development and HealthHarvard School of Public HealthBostonUSA
  3. 3.Dean for Academic Affairs and Development of BiostatisticsHarvard School of Public HealthBostonUSA
  4. 4.Department of Global Health and PopulationHarvard School of Public HealthBostonUSA

Personalised recommendations