Cancer Causes & Control

, Volume 19, Issue 9, pp 975–980

Association of the TCF7L2 polymorphism with colorectal cancer and adenoma risk

  • Aditi Hazra
  • Charles S. Fuchs
  • Andrew T. Chan
  • Edward L. Giovannucci
  • David J. Hunter
Original Paper

Abstract

We evaluated the association of a polymorphism in TCF7L2 (RS12255372) in the WNT signaling pathway, which previously has been strongly associated with risk of Type II Diabetes, with colorectal cancer (CRC) and adenoma in the prospective Nurses’ Health Study (NHS) and Health Professionals Follow-up Study (HPFS) cohorts. Hyperinsulinemia may be related to the risk of colon adenoma and cancer, therefore this variant associated with reduced insulin secretion would be predicted to be inversely associated with colorectal cancer. Overall, in the NHS and HPFS, there was suggestive evidence for an inverse association associated with homozygosity for the minor allele of RS12255372 (TCF7L2 TT) and CRC (conditional and covariate adjusted OR = 0.63, 95% CI: 0.37–1.08; P for heterogeneity 0.52 for the association in women and men). In summary, the marginal association of the TCF7L2 SNP with CRC might be due to chance, but warrants further laboratory and epidemiological investigation.

Keywords

TCF7L2 Polymorphism WNT pathway Colorectal cancer Colorectal adenoma 

Abbreviations

CI

Confidence interval

CRC

Colorectal cancer

HPFS

Health Professionals Follow-up Study

NHS

Nurses’ Health Study

OR

Odds Ratio

SNPs

Single nucleotide polymorphisms

TCF7L2

T-cell factor 7 like 2

T2D

Type II Diabetes

References

  1. 1.
    Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487PubMedCrossRefGoogle Scholar
  2. 2.
    Duval A, Gayet J, Zhou XP, Iacopetta B, Thomas G, Hamelin R (1999) Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 59:4213–4215PubMedGoogle Scholar
  3. 3.
    Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R (2000) The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 60:3872–3879PubMedGoogle Scholar
  4. 4.
    Cuilliere-Dartigues P, El-Bchiri J, Krimi A, Buhard O, Fontanges P, Flejou JF, Hamelin R, Duval A (2006) TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription. Oncogene 25:4441–4448PubMedCrossRefGoogle Scholar
  5. 5.
    Sjöblom T et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274PubMedCrossRefGoogle Scholar
  6. 6.
    Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323PubMedCrossRefGoogle Scholar
  7. 7.
    Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRefGoogle Scholar
  8. 8.
    Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PIW, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D, the Diabetes Prevention Program (2006) TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 355:241–250Google Scholar
  9. 9.
    Zhang C, Qi L, Hunter DJ, Meigs JB, Manson JE, van Dam RM, Hu FB (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men. Diabetes 55:2645–2648PubMedCrossRefGoogle Scholar
  10. 10.
    Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjogren M, Florez JC, Almgren P, Isomaa B, Orho-Melander M, Lindblad U, Daly MJ, Tuomi T, Hirschhorn JN, Ardlie KG, Groop LC, Altshuler D (2006) Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 55:2890–2895PubMedCrossRefGoogle Scholar
  11. 11.
    Scott LJ, Bonnycastle LL, Willer CJ, Sprau AG, Jackson AU, Narisu N, Duren WL, Chines PS, Stringham HM, Erdos MR, Valle TT, Tuomilehto J, Bergman RN, Mohlke KL, Collins FS, Boehnke M (2006) Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample. Diabetes 55:2649–2653PubMedCrossRefGoogle Scholar
  12. 12.
    Groves CJ, Zeggini E, Minton J, Frayling TM, Weedon MN, Rayner NW, Hitman GA, Walker M, Wiltshire S, Hattersley AT, McCarthy MI (2006) Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes 55:2640–2644PubMedCrossRefGoogle Scholar
  13. 13.
    Damcott CM, Pollin TI, Reinhart LJ, Ott SH, Shen H, Silver KD, Mitchell BD, Shuldiner AR (2006) Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes 55:2654–2659PubMedCrossRefGoogle Scholar
  14. 14.
    Platz EA, Hankinson SE, Rifai N, Colditz GA, Speizer FE, Giovannucci E (1999) Glycosylated hemoglobin and risk of colorectal cancer and adenoma (United States). Cancer Causes Control 10:379–386PubMedCrossRefGoogle Scholar
  15. 15.
    Wei EK, Ma J, Pollak MN et al (2006) C-peptide, insulin-like growth factor binding protein-1, glycosylated hemoglobin, and the risk of distal colorectal adenoma in women. Cancer Epidemiol Biomarkers Prev 15:750–755PubMedCrossRefGoogle Scholar
  16. 16.
    Wei EK, Ma J, Pollak MN et al (2005) A prospective study of C-peptide, insulin-like growth factor-I, insulin-like growth factor binding protein-1, and the risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 14:850–855PubMedCrossRefGoogle Scholar
  17. 17.
    Tran TT, Naigamwalla D, Oprescu AI et al (2006) Hyperinsulinemia, but not other factors associated with insulin resistance, acutely enhances colorectal epithelial proliferation in vivo. Endocrinology 147:1830–1837PubMedCrossRefGoogle Scholar
  18. 18.
    Koushik A, Kraft P, Fuchs C, Hankinson SE, Willett WC, Giovannucci EL, Hunter DJ (2006) Polymorphisms in one-carbon metabolism genes and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev 15:2408–2417PubMedCrossRefGoogle Scholar
  19. 19.
    Tranah GJ, Giovannucci E, Ma J, Fuchs C Hunter DJ (2005) APC Asp1822Val and Gly2502Ser polymorphisms and risk of colorectal cancer and adenoma. Cancer Epidemiol Biomarkers Prev 14:863–870PubMedCrossRefGoogle Scholar
  20. 20.
    Livak KJ (1999) Allelic discrimination using fluorogenic probes and 5′ nuclease assay. Genet Anal 14:143–149PubMedGoogle Scholar
  21. 21.
    Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P (1998) Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 8:573–581Google Scholar
  22. 22.
    Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851PubMedGoogle Scholar
  23. 23.
    Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426PubMedCrossRefGoogle Scholar
  24. 24.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512PubMedCrossRefGoogle Scholar
  25. 25.
    Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRefGoogle Scholar
  26. 26.
    Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRefGoogle Scholar
  27. 27.
    Diabetes Genetics Initiative (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336CrossRefGoogle Scholar
  28. 28.
    Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Gen 39:770–775CrossRefGoogle Scholar
  29. 29.
    Burwinkel B, Shanugam KS, Hemminki K, Meindl A, Schmutzler RK, Sutter C, Wappenschmidt B, Kiechle M, Bartram CR, Frank B (2006) Transcription factor 7-like 2 (TCF7L2) variant is associated with familial breast cancer risk: a case–control study. BMC Cancer 6:268PubMedCrossRefGoogle Scholar
  30. 30.
    Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Krempler F, Weitgasser R, Nejjari C, Patsch W, Chikri M, Meyre D, Froguel P (2007) TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med 85:777–782PubMedCrossRefGoogle Scholar
  31. 31.
    Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280:1457–1464PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Aditi Hazra
    • 1
    • 2
  • Charles S. Fuchs
    • 2
    • 3
  • Andrew T. Chan
    • 2
  • Edward L. Giovannucci
    • 2
    • 4
  • David J. Hunter
    • 1
    • 2
    • 4
  1. 1.Program in Molecular and Genetic Epidemiology, Department of EpidemiologyHarvard School of Public HealthBostonUSA
  2. 2.Channing Laboratory, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA
  4. 4.Department of NutritionHarvard School of Public HealthBostonUSA

Personalised recommendations