Cancer Causes & Control

, Volume 19, Issue 7, pp 703–710 | Cite as

Hormonal profile of diabetic men and the potential link to prostate cancer

  • Jocelyn S. Kasper
  • Yan Liu
  • Michael N. Pollak
  • Nader Rifai
  • Edward Giovannucci
Original Paper



Previous studies suggest men with diabetes may be at reduced risk for prostate cancer as compared to men without diabetes. To investigate potential biological mechanisms, hormonal profiles of diabetic men and non-diabetic controls were compared.


In the Health Professionals Follow-Up Study, plasma levels of C-peptide, testosterone, sex-hormone binding globulin, insulin-like growth factor-1, and insulin-like growth factor binding protein-3 were determined in 171 diabetic men and 3,001 non-diabetic controls. Multiple linear regression analysis was conducted and least square means were calculated for hormones of interest.


Plasma levels of several hormones either ≤1, 1.1–6, 6.1–14.9, or ≥15 years after diagnosis with diabetes were examined. As time since diabetes diagnosis increased, plasma levels of C-peptide and IGFBP-3 significantly decreased (p for trend: C-peptide =.05, IGFBP-3 =.03). While testosterone and SHBG levels both significantly increased with increasing time since diabetes diagnosis (p for trend: testosterone =.02, SHBG =.002), the ratio of testosterone to SHBG decreased, suggesting a reduction in bioavailable testosterone. Plasma IGF-1 levels were lower in diabetics than non-diabetics, but no significant time trend was noted.


This study of hormonal profiles of diabetic versus non-diabetic men identified changes in diabetic men that may be consistent with reduced prostate cancer risk.


Diabetes Prostate cancer Testosterone C-peptide SHBG IGF-1 IGFBP-3 



This study was supported by grant CA55075 from the National Cancer Institute and W81XWH-06-1-0188 from the Department of Defense. The content is solely the responsibility of the authors and does not necessarily represent the official view of NCI or the National Institutes of Health.


  1. 1.
    Everhart J, Wright D (1995) Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 273(20):1605–1609PubMedCrossRefGoogle Scholar
  2. 2.
    Hu FB, Manson JE, Liu S, Hunter D, Colditz GA, Michels KB et al (1999) Prospective study of adult onset diabetes mellitus (type 2) and risk of colorectal cancer in women. J Natl Cancer Inst 91(6):542–547PubMedCrossRefGoogle Scholar
  3. 3.
    La Vecchia C, Negri E, D’Avanzo B, Boyle P, Franceschi S (1990) Medical history and primary liver cancer. Cancer Res 50(19):6274–6277PubMedGoogle Scholar
  4. 4.
    Strickler HD, Wylie-Rosett J, Rohan T, Hoover DR, Smoller S, Burk RD et al (2001) The relation of type 2 diabetes and cancer. Diabetes Technol Ther 3(2):263–274PubMedCrossRefGoogle Scholar
  5. 5.
    Larsson SC, Orsini N, Brismar K, Wolk A (2006) Diabetes mellitus and risk of bladder cancer: a meta-analysis. Diabetologia 49(12):2819–2823PubMedCrossRefGoogle Scholar
  6. 6.
    Bonovas S, Filioussi K, Tsantes A (2004) Diabetes mellitus and risk of prostate cancer: a meta-analysis. Diabetologia 47(6):1071–1078PubMedCrossRefGoogle Scholar
  7. 7.
    Kasper JS, Giovannucci E (2006) A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15(11):2056–2062PubMedCrossRefGoogle Scholar
  8. 8.
    Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1998) Diabetes mellitus and risk of prostate cancer (United States). Cancer Causes Control 9(1):3–9PubMedCrossRefGoogle Scholar
  9. 9.
    Platz EA, Leitzmann MF, Rifai N, Kantoff PW, Chen YC, Stampfer MJ et al (2005) Sex steroid hormones and the androgen receptor gene CAG repeat and subsequent risk of prostate cancer in the prostate-specific antigen era. Cancer Epidemiol Biomarkers Prev 14(5):1262–1269PubMedCrossRefGoogle Scholar
  10. 10.
    Bonser AM, Garcia-Webb P (1984) C-peptide measurement: methods and clinical utility. Crit Rev Clin Lab Sci 19(4):297–352PubMedGoogle Scholar
  11. 11.
    Platz EA, Pollak MN, Rimm EB, Majeed N, Tao Y, Willett WC et al (1999) Racial variation in insulin-like growth factor-1 and binding protein-3 concentrations in middle-aged men. Cancer Epidemiol Biomarkers Prev 8(12):1107–1110PubMedGoogle Scholar
  12. 12.
    Rodriguez C, Patel AV, Mondul AM, Jacobs EJ, Thun MJ, Calle EE (2005) Diabetes and risk of prostate cancer in a prospective cohort of US men. Am J Epidemiol 161(2):147–152PubMedCrossRefGoogle Scholar
  13. 13.
    Tavani A, Gallus S, Bosetti C, Tzonou A, Lagiou P, Negri E et al (2002) Diabetes and the risk of prostate cancer. Eur J Cancer Prev 11(2):125–128PubMedCrossRefGoogle Scholar
  14. 14.
    Peehl DM, Stamey TA (1986) Serum-free growth of adult human prostatic epithelial cells. In Vitro Cell Dev Biol 22(2):82–90PubMedCrossRefGoogle Scholar
  15. 15.
    Polychronakos C, Janthly U, Lehoux JG, Koutsilieris M (1991) Mitogenic effects of insulin and insulin-like growth factors on PA-III rat prostate adenocarcinoma cells: characterization of the receptors involved. Prostate 19(4):313–321PubMedCrossRefGoogle Scholar
  16. 16.
    Hsing AW, Chua S Jr, Gao YT, Gentzschein E, Chang L, Deng J et al (2001) Prostate cancer risk and serum levels of insulin and leptin: a population-based study. J Natl Cancer Inst 93(10):783–789PubMedCrossRefGoogle Scholar
  17. 17.
    Lehrer S, Diamond EJ, Stagger S, Stone NN, Stock RG (2002) Increased serum insulin associated with increased risk of prostate cancer recurrence. Prostate 50(1):1–3PubMedCrossRefGoogle Scholar
  18. 18.
    Ma J, Li H, Pollak M, Kurth T, Giovannucci E, Stampfer MJ (2006) Prediagnostic plasma C-peptide and prostate cancer incidence and survival. Proceedings of AACR “Frontiers in Cancer Prevention” Meeting, Boston Abstract 204Google Scholar
  19. 19.
    Hammarsten J, Hogstedt B (2005) Hyperinsulinaemia: a prospective risk factor for lethal clinical prostate cancer. Eur J Cancer 41(18):2887–2895PubMedCrossRefGoogle Scholar
  20. 20.
    Stocks T, Lukanova A, Rinaldi S, Biessy C, Dossus L, Lindahl B et al (2007) Insulin resistance is inversely related to prostate cancer: a prospective study in Northern Sweden. Int J Cancer 120(12):2678–2686PubMedCrossRefGoogle Scholar
  21. 21.
    Gong Z, Neuhouser ML, Goodman PJ, Albanes D, Chi C, Hsing AW et al (2006) Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 15(10):1977–1983PubMedCrossRefGoogle Scholar
  22. 22.
    Haffner SM, Dunn JF, Katz MS (1992) Relationship of sex hormone-binding globulin to lipid, lipoprotein, glucose, and insulin concentrations in postmenopausal women. Metabolism 41(3):278–284PubMedCrossRefGoogle Scholar
  23. 23.
    Strain G, Zumoff B, Rosner W, Pi-Sunyer X (1994) The relationship between serum levels of insulin and sex hormone-binding globulin in men: the effect of weight loss. J Clin Endocrinol Metab 79(4):1173–1176PubMedCrossRefGoogle Scholar
  24. 24.
    Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ (1996) Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst 88(16):1118–1126PubMedCrossRefGoogle Scholar
  25. 25.
    Mohr BA, Feldman HA, Kalish LA, Longcope C, McKinlay JB (2001) Are serum hormones associated with the risk of prostate cancer? Prospective results from the Massachusetts male aging study. Urology 57(5):930–935PubMedCrossRefGoogle Scholar
  26. 26.
    Dorgan JF, Albanes D, Virtamo J, Heinonen OP, Chandler DW, Galmarini M et al (1998) Relationships of serum androgens and estrogens to prostate cancer risk: results from a prospective study in Finland. Cancer Epidemiol Biomarkers Prev 7(12):1069–1074PubMedGoogle Scholar
  27. 27.
    Chen C, Weiss NS, Stanczyk FZ, Lewis SK, DiTommaso D, Etzioni R et al (2003) Endogenous sex hormones and prostate cancer risk: a case-control study nested within the carotene and retinol efficacy trial. Cancer Epidemiol Biomarkers Prev 12(12):1410–1416PubMedGoogle Scholar
  28. 28.
    Parsons JK, Carter HB, Platz EA, Wright EJ, Landis P, Metter EJ (2005) Serum testosterone and the risk of prostate cancer: potential implications for testosterone therapy. Cancer Epidemiol Biomarkers Prev 14(9):2257–2260PubMedCrossRefGoogle Scholar
  29. 29.
    Stattin P, Lumme S, Tenkanen L, Alfthan H, Jellum E, Hallmans G et al (2004) High levels of circulating testosterone are not associated with increased prostate cancer risk: a pooled prospective study. Int J Cancer 108(3):418–424PubMedCrossRefGoogle Scholar
  30. 30.
    Roddam AW, Allen NE, Appleby P, Key TJ (2008) Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J Natl Cancer Inst 100(3):170–183PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffman MA, DeWolf WC, Morgentaler A (2000) Is low serum free testosterone a marker for high grade prostate cancer? J Urol 163(3):824–827PubMedCrossRefGoogle Scholar
  32. 32.
    Schatzl G, Madersbacher S, Haitel A, Gsur A, Preyer M, Haidinger G et al (2003) Associations of serum testosterone with microvessel density, androgen receptor density and androgen receptor gene polymorphism in prostate cancer. J Urol 169(4):1312–1315PubMedCrossRefGoogle Scholar
  33. 33.
    Schatzl G, Madersbacher S, Thurridl T, Waldmuller J, Kramer G, Haitel A et al (2001) High-grade prostate cancer is associated with low serum testosterone levels. Prostate 47(1):52–58PubMedCrossRefGoogle Scholar
  34. 34.
    Jackson FL, Hutson JC (1984) Altered responses to androgen in diabetic male rats. Diabetes 33(9):819–824PubMedCrossRefGoogle Scholar
  35. 35.
    Barrett-Connor E (1992) Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus. Ann Intern Med 117(10):807–811PubMedGoogle Scholar
  36. 36.
    Barrett-Connor E, Khaw KT, Yen SS (1990) Endogenous sex hormone levels in older adult men with diabetes mellitus. Am J Epidemiol 132(5):895–901PubMedGoogle Scholar
  37. 37.
    Bach LA, Rechler MM (1992) Insulin-like growth factors and diabetes. Diabetes Metab Rev 8(3):229–257PubMedCrossRefGoogle Scholar
  38. 38.
    Clauson PG, Brismar K, Hall K, Linnarsson R, Grill V (1998) Insulin-like growth factor-I and insulin-like growth factor binding protein-1 in a representative population of type 2 diabetic patients in Sweden. Scand J Clin Lab Invest 58(4):353–360PubMedCrossRefGoogle Scholar
  39. 39.
    Suikkari AM, Koivisto VA, Rutanen EM, Yki-Jarvinen H, Karonen SL, Seppala M (1988) Insulin regulates the serum levels of low molecular weight insulin-like growth factor-binding protein. J Clin Endocrinol Metab 66(2):266–272PubMedCrossRefGoogle Scholar
  40. 40.
    Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P et al (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279(5350):563–566PubMedCrossRefGoogle Scholar
  41. 41.
    Iwamura M, Sluss PM, Casamento JB, Cockett AT (1993) Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines. Prostate 22(3):243–252PubMedCrossRefGoogle Scholar
  42. 42.
    Mantzoros CS, Tzonou A, Signorello LB, Stampfer M, Trichopoulos D, Adami HO (1997) Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. Br J Cancer 76(9):1115–1118PubMedGoogle Scholar
  43. 43.
    Stattin P, Bylund A, Rinaldi S, Biessy C, Dechaud H, Stenman UH et al (2000) Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst 92(23):1910–1917PubMedCrossRefGoogle Scholar
  44. 44.
    LeRoith D, Baserga R, Helman L, Roberts CT Jr (1995) Insulin-like growth factors and cancer. Ann Intern Med 122(1):54–59PubMedGoogle Scholar
  45. 45.
    Adami H-O, Hunter DJ, Trichopoulos D (2002) Textbook of cancer epidemiology. Oxford University Press, Oxford, New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jocelyn S. Kasper
    • 1
    • 2
  • Yan Liu
    • 1
  • Michael N. Pollak
    • 3
  • Nader Rifai
    • 4
    • 5
  • Edward Giovannucci
    • 1
    • 2
    • 6
  1. 1.Department of NutritionHarvard School of Public HealthBostonUSA
  2. 2.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  3. 3.Department of Medicine and OncologyMcGill UniversityMontrealCanada
  4. 4.Department of PathologyHarvard Medical SchoolBostonUSA
  5. 5.Department of Laboratory MedicineChildren’s HospitalBostonUSA
  6. 6.Channing Laboratory, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations