Cancer Causes & Control

, Volume 19, Issue 1, pp 13–23

Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil

  • Jorunn Kirkeleit
  • Trond Riise
  • Magne Bråtveit
  • Bente E. Moen
Original Paper


Benzene exposure has been shown to be related to acute myelogenous leukemia, while the association with multiple myeloma and non-Hodgkin lymphoma has been a much-debated issue. We performed a historical cohort study to investigate whether workers employed in Norway’s upstream petroleum industry exposed to crude oil and other products containing benzene have an increased risk of developing various subtypes of hematologic neoplasms. Using the Norwegian Registry of Employers and Employees we included all 27,919 offshore workers registered from 1981 to 2003 and 366,114 referents from the general working population matched by gender, age, and community of residence. The cohort was linked to the Cancer Registry of Norway. Workers in the job category “upstream operator offshore”, having the most extensive contact with crude oil, had an excess risk of hematologic neoplasms (blood and bone marrow) (rate ratio (RR) 1.90, 95% confidence interval (95% CI): 1.19–3.02). This was ascribed to an increased risk of acute myelogenous leukemia (RR 2.89, 95% CI: 1.25−6.67) and multiple myeloma (RR 2.49, 95% CI: 1.21–5.13). There were no statistical differences between the groups in respect to non-Hodgkin lymphoma. The results suggest that benzene exposure, which most probably caused the increased risk of acute myelogenous leukemia, also resulted in an increased risk of multiple myeloma.


Benzene Cohort studies Hematologic neoplasms Leukemia Multiple myeloma 


  1. 1.
    Benzene. IARC Monographs on the evaluation of carcinogenic risks to humans, vol 29 (Suppl 17). International Agency for Research on Cancer, Lyon, France, 1987Google Scholar
  2. 2.
    Schnatter AR, Rosamilia K, Wojcik NC (2005) Review of the literature on benzene exposure and leukemia subtypes. Chem Biol Interact 153–154:9–21PubMedCrossRefGoogle Scholar
  3. 3.
    Bergsagel DE, Wong O, Bergsagel PL et al (1999) Benzene and multiple myeloma: appraisal of the scientific evidence. Blood 94(4):1174–1182PubMedGoogle Scholar
  4. 4.
    Goldstein BD, Shalat SL (2000) The causal relation between benzene exposure and multiple myeloma [letter to editor]. Blood 95(4):1512–1514PubMedGoogle Scholar
  5. 5.
    Wong O, Raabe GK (2000) Non-Hodgkin’s lymphoma and exposure to benzene in a multinational cohort of more than 308,000 petroleum workers, 1937 to 1996. J Occup Env Med 42(5):554–568CrossRefGoogle Scholar
  6. 6.
    Goldstein BD, Shalat S (2000) Non-Hodgkin’s lymphoma and exposure to benzene in petroleum workers [letter to editor]. J Occup Env Med 42(12):1133–1134CrossRefGoogle Scholar
  7. 7.
    Mehlman MA (2006) Causal relationship between non-Hodgkin’s lymphoma and exposure to benzene and benzene-containing solvents. Ann N Y Acad Sci 1076:120–128PubMedCrossRefGoogle Scholar
  8. 8.
    Smith MT, Jones RM, Smith AH (2007) Benzene exposure and risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 16(3):385–391PubMedCrossRefGoogle Scholar
  9. 9.
    Glass DC, Gray CN, Jolley DJ et al (2003) Leukemia risk associated with low-level benzene exposure. Epidemiology 14:569–577PubMedCrossRefGoogle Scholar
  10. 10.
    Sathiakumar N, Delzell E, Cole P, Brill I, Frisch J, Spivey G (1995) A case–control study of leukemia among petroleum workers. J Occup Environ Med 37(11):1269–1277PubMedCrossRefGoogle Scholar
  11. 11.
    Divine BJ, Hartman CM (2000) Update of a study of crude oil production workers 1946–94. Occup Environ Med 57(6):411–417PubMedCrossRefGoogle Scholar
  12. 12.
    Gun RT, Pratt NL, Griffith EC, Adams GG, Bisby JA, Robinson KL (2004) Update of a prospective study of mortality and cancer incidence in the Australian petroleum industry. Occup Environ Med 61(2):150–156PubMedCrossRefGoogle Scholar
  13. 13.
    Satin KP, Bailey WJ, Newton KL, Ross AY, Wong O (2002) Updated epidemiological study of workers at two California petroleum refineries, 1950–95. Occup Environ Med 59(4):248–256PubMedCrossRefGoogle Scholar
  14. 14.
    Thomas TL, Waxweiler RJ, Moure-Eraso R, Itaya S, Fraumeni JF Jr (1982) Mortality patterns among workers in three Texas oil refineries. J Occup Med 24(2):135–141PubMedGoogle Scholar
  15. 15.
    Goldstein BD (1990) Is exposure to benzene a cause of human multiple myeloma? Ann N Y Acad Sci 609:225–230PubMedCrossRefGoogle Scholar
  16. 16.
    Wong O, Raabe GK (1997) Multiple myeloma and benzene exposure in a multinational cohort of more than 250,000 petroleum workers. Regul Toxicol 26:188–199CrossRefGoogle Scholar
  17. 17.
    Schnatter AR, Armstrong TW, Nicolich MJ et al (1996) Lymphohaematopoietic malignancies and quantitative estimates of exposure to benzene in Canadian petroleum distribution workers. Occup Environ Med 53(11):773–781PubMedCrossRefGoogle Scholar
  18. 18.
    Durand KTH, Lees PSJ, Kern DG (1995) Exposure assessment and respirator selection in the cleaning of crude oil process vessels. Appl Occup Environ Hyg 10(2):120–124Google Scholar
  19. 19.
    Kirkeleit J, Riise T, Bråtveit M, Moen BE (2006) Benzene exposure on a crude oil production vessel. Ann Occup Hyg 50:123–129PubMedCrossRefGoogle Scholar
  20. 20.
    Whiteley S, Plant N (2000) Occupational benzene, toluene, xylene and ethylbenzene during routine offshore oil and gas production operations. HSE offshore technology report OTO 1999 088. UK Health and Safety Executive, Bootle, UK. Available from: Accessed 14 August, 2007
  21. 21.
    Gardner R (2003) Overview and characteristics of some occupational exposures and health risks on offshore oil and gas installations. Ann Occup Hyg 47(3):201–210PubMedCrossRefGoogle Scholar
  22. 22.
    Sorahan T, Nichols L, Harrington JM (2007) Mortality of UK oil refinery and petroleum distribution workers, 1951–2003. Occup Med 57(3):177–185CrossRefGoogle Scholar
  23. 23.
    Mehlum IS, Kjuus H (2005) Omfang og konsekvenser av arbeidskader og arbeidsbetinget sykdom på norsk kontinentalsokkel [The extent and consequences of work related injuries and diseases on Norways continental shelf] (in Norwegian). Natl Inst Occup Health 4:9–18. Available at:;action=Article.publicShow;ID=2276. Accessed August 15, 2007
  24. 24.
    Glass DC, Sim MR, Fritschi L, Gray CN, Jolley DJ, Gibbons C (2004) Leukemia risk and relevant benzene exposure period—re: follow-up time on risk estimates, Am J Ind Med 42:481–489, 2002. Am J Ind Med 45(2):222–223PubMedCrossRefGoogle Scholar
  25. 25.
    Hayes RB, Yin SN, Dosemeci M et al (1997) Benzene and the dose-related incidence of hematologic neoplasms in China. Chinese Academy of Preventive Medicine—National Cancer Institute Benzene Study Group. J Natl Cancer Inst 89(14):1065–1071PubMedCrossRefGoogle Scholar
  26. 26.
    Hayes RB, Songnian Y, Dosemeci M, Linet M (2001) Benzene and lymphohematopoietic malignancies in humans. Am J Ind Med 40(2):117–126PubMedCrossRefGoogle Scholar
  27. 27.
    Rinsky RA, Hornung RW, Silver SR, Tseng CY (2002) Benzene exposure and hematopoietic mortality: a long-term epidemiologic risk assessment. Am J Ind Med 42(6):474–480PubMedCrossRefGoogle Scholar
  28. 28.
    Steinsvåg K, Bråtveit M, Moen BE (2007) Exposure to carcinogens for defined job categories in Norway’s offshore petroleum industry, 1970 to 2005. Occup Environ Med 64(4):250–258PubMedCrossRefGoogle Scholar
  29. 29.
    Bråtveit M, Kirkeleit J, Moen BE (2007) Biological monitoring of benzene exposure for process operators during ordinary activity in the upstream petroleum industry. Ann Occup Hyg. Epub ahead of print: doi:10.1093/annhyg/mem029
  30. 30.
    Runion HE (1988) Occupational exposure to potentially hazardous agents in the petroleum industry. Occup Med 3:431–444PubMedGoogle Scholar
  31. 31.
    Glass DC, Adams GG, Manuell RW, Bisby JA (2000) Retrospective exposure assessment for benzene in the Australian petroleum industry. Ann Occup Hyg 44(4):301–320PubMedGoogle Scholar
  32. 32.
    Verma DK, Johnson DM, McLean JD (2000) Benzene and total hydrocarbon exposures in the upstream petroleum oil and gas industry. AIHAJ 61:255–263PubMedCrossRefGoogle Scholar
  33. 33.
    Collins JJ, Ireland B, Buckley CF, Shepperly D (2003) Lymphohaematopoeitic cancer mortality among workers with benzene exposure. Occup Environ Med. 60(9):676–679PubMedCrossRefGoogle Scholar
  34. 34.
    Nilsson R, Nordlinder R, Høgstedt B, Karlsson A, Jarvholm B (1996) Genotoxic effects in workers exposed to low levels of benzene from gasoline. Am J Ind Med 30(3):317–324PubMedCrossRefGoogle Scholar
  35. 35.
    Sul D, Lee E, Lee MY et al (2005) DNA damage in lymphocytes of benzene exposed workers correlates with trans,trans-muconic acids and breath benzene levels. Mutat Res 582(1–2):61–70PubMedGoogle Scholar
  36. 36.
    Lan Q, Zhang L, Li G et al (2004) Hematotoxicity in workers exposed to low levels of benzene. Science 306(5702):1774–1776PubMedCrossRefGoogle Scholar
  37. 37.
    Kirkeleit J, Ulvestad E, Riise T, Bråtveit M, Moen BE (2006) Acute suppression of serum IgM and IgA in tank workers exposed to benzene. Scand J Immunol 64:690–698PubMedCrossRefGoogle Scholar
  38. 38.
    Rothman N, Smith MT, Hayes RB et al (1997) Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C→T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res 57(14):2839–2842PubMedGoogle Scholar
  39. 39.
    Wan J, Shi J, Hui L et al (2002) Association of genetic polymorphisms in CYP2E1, MPO, NQO1, GSTM1, and GSTT1 genes with benzene poisoning. Environ Health Perspect 110(12):1213–1218PubMedCrossRefGoogle Scholar
  40. 40.
    Shen M, Lan Q, Zhang L et al (2006) Polymorphisms in genes involved in DNA double-strand break repair pathway and susceptibility to benzene-induced hematotoxicity. Carcinogenesis 27(10):2083–2089PubMedCrossRefGoogle Scholar
  41. 41.
    Lan Q, Zhang L, Shen M et al (2005) Polymorphisms in cytokine and cellular adhesion molecule genes and susceptibility to hematotoxicity among workers exposed to benzene. Cancer Res 65(20):9574–9581PubMedCrossRefGoogle Scholar
  42. 42.
    Lv L, Kerzic P, Lin G et al (2007) The TNF-alpha 238A polymorphism is associated with susceptibility to persistent bone marrow dysplasia following chronic exposure to benzene. Leuk Res. Epub ahead of print: doi:10.1016/j.leukres.2007.01.014
  43. 43.
    Darrall KG, Figgins JA, Brown RD, Phillips GF (1998) Determination of benzene and associated volatile compounds in mainstream cigarette smoke. Analyst 123:1095–1101PubMedCrossRefGoogle Scholar
  44. 44.
    Lichtman MA (2007) Cigarette smoking, cytogenetic abnormalities, and acute myelogenous leukemia. Leukemia 21(6):1137–1140PubMedCrossRefGoogle Scholar
  45. 45.
    Pekari K, Vainiotalo S, Heikkilä P, Palotie A, Luotamo M, Riihimäki V (1992) Biological monitoring of occupational exposure to low levels of benzene. Scand J Work Environ Health 18:317–322PubMedGoogle Scholar
  46. 46.
    DFG (Deutsche Forschungsgemeinschaft) (2005) MAK- und BAT-Werte-Liste. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstoff-toleranzwerte. Wiley-VCH, WeinheimGoogle Scholar
  47. 47.
    Infante PF (2006) Benzene exposure and multiple myeloma: a detailed meta-analysis of benzene cohort studies. Ann N Y Acad Sci 1076:90–109PubMedCrossRefGoogle Scholar
  48. 48.
    Finkelstein MM (2000) Leukemia after exposure to benzene: temporal trends and implications for standards. Am J Ind Med 38(1):1–7PubMedCrossRefGoogle Scholar
  49. 49.
    Silver SR, Rinsky RA, Cooper SP, Hornung RW, Lai D (2002) Effect of follow-up time on risk estimates: a longitudinal examination of the relative risks of leukemia and multiple myeloma in a rubber hydrochloride cohort. Am J Ind Med 42:481–489PubMedCrossRefGoogle Scholar
  50. 50.
    Huebner WW, Wojcik NC, Rosamilia K, Jorgensen G, Milano CA (2004) Mortality updates (1970–1997) of two refinery/petrochemical plant cohorts at Baton Rouge, Louisiana, and Baytown, Texas. J Occup Environ Med 46(12):1229–1245PubMedGoogle Scholar
  51. 51.
    Nieters A, Deeg E, Becker N (2006) Tobacco and alcohol consumption and risk of lymphoma: results of a population-based case–control study in Germany. Int J Cancer 118(2):422–430PubMedCrossRefGoogle Scholar
  52. 52.
    Brønnum-Hansen J, Juel K (2004) Impact of smoking on the social gradient in health expectancy in Denmark. J Epidemiol Community Health 58(7):604–610PubMedCrossRefGoogle Scholar
  53. 53.
    Jha P, Peto R, Zatonski W, Boreham J, Jarvis MJ, Lopez AD (2006) Social inequalities in male mortality, and in male mortality from smoking: indirect estimation from national death rates in England and Wales, Poland, and North America. Lancet 368(9533):367–370PubMedCrossRefGoogle Scholar
  54. 54.
    Bull N, Riise T, Moen BE (1999) Influence of paternal exposure to oil and oil products on time to pregnancy and spontaneous abortions. Occup Med 49(6):371–376CrossRefGoogle Scholar
  55. 55.
    Riise T, Moen BE, Nordtvedt MW (2003) Occupation, lifestyle factors and health related quality of life: the Hordaland study. J Occup Environ Med 45:324–332PubMedCrossRefGoogle Scholar
  56. 56.
    Ionizing radiation (2000) Part 1: X- and gamma (γ)-radiation, and neutrons. Summary of data reported and evaluation. IARC Monographs on the evaluation of carcinogenic risks to humans, vol 75. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  57. 57.
    de Roos AJ, Baris D, Weiss NS et al (2006) Multiple myeloma. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer. Epidemiology and Prevention, 3rd edn. Oxford University Press, New York, pp 919–945Google Scholar
  58. 58.
    Sekse T, Paulsen GU, Hannevik M et al (2005) Yrkeseksponering i Norge Ioniserende stråling Ikke-ioniserende stråling [Radiation exposure of workers in Norway]. Strålevern Rapport 2005:15. Norwegian Radiation Protection Authority, Østerås (in Norwegian)Google Scholar
  59. 59.
    Sources and effects of ionizing radiation: Volume 1: Sources. United Nations Scientific Committee on the Effects of Atomic Radiations. UNSCEAR 2000 report to the general assembly, with scientific annexes. United Nations, New York, 2000Google Scholar
  60. 60.
    Hamlat MS, Djeffal S, Kadi H (2001) Assessment of radiation exposures from naturally occurring radioactive materials in the oil and gas industry. Appl Radiat Isot 55(1):141–146PubMedCrossRefGoogle Scholar
  61. 61.
    Leonard RC, Kreckmann KH, Lineker GA, Mars G, Buchamich J, Youk A (2007) Comparison of standardized mortality ratios (SMRs) obtained from use of reference populations based on a company-wide registry cohort to SMRs calculated against local and national rates. Chem Biol Interact 166:317–322PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jorunn Kirkeleit
    • 1
  • Trond Riise
    • 1
  • Magne Bråtveit
    • 1
  • Bente E. Moen
    • 1
  1. 1.Section for Occupational Medicine, Department of Public Health and Primary Health Care University of BergenBergenNorway

Personalised recommendations