Cancer Causes & Control

, Volume 18, Issue 5, pp 571–579 | Cite as

Point and interval estimates of partial population attributable risks in cohort studies: examples and software

Original Paper

Abstract

The concept of the population attributable risk (PAR) percent has found widespread application in public health research. This quantity describes the proportion of a disease which could be prevented if a specific exposure were to be eliminated from a target population. We present methods for obtaining point and interval estimates of partial PARs, where the impact on disease burden for some presumably modifiable determinants is estimated in, and applied to, a cohort study. When the disease is multifactorial, the partial PAR must, in general, be used to quantify the proportion of disease which can be prevented if a specific exposure or group of exposures is eliminated from a target population, while the distribution of other modifiable and non-modifiable risk factors is unchanged. The methods are illustrated in a study of risk factors for bladder cancer incidence (Michaud DS et al., New England J Med 340 (1999) 1390). A user-friendly SAS macro implementing the methods described in this paper is available via the worldwide web.

Keywords

Population attributable risk Relative risk Epidemiologic methods Cohort studies Statistics Burden of disease 

References

  1. 1.
    Levin M (1953) The occurrence of lung cancer in man. Aca Unio Inter Contra Cancrum 9:531–541Google Scholar
  2. 2.
    Walter SD (1975) The distribution of Levin’s measure of attributable risk. Biometrika 62:371–374CrossRefGoogle Scholar
  3. 3.
    Uter W, Pfahlberg A (1999) The concept of attributable risk in epidemiological practice. Biom J 41(8):985–993CrossRefGoogle Scholar
  4. 4.
    Miettinen O (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 99(5):325–332PubMedGoogle Scholar
  5. 5.
    Cole P, Macmahon B (1971) Attributable risk percent in case-control studies. Br J Prevent Social Med 25(4):242Google Scholar
  6. 6.
    Last JM (1983) A dictionary of epidemiology. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C (1985) Estimating the population attributable risk for multiple risk-factors using case-control data. Am J Epidemiol 122(5):904–913PubMedGoogle Scholar
  8. 8.
    Benichou J (2001) A review of adjusted estimators of attributable risks. Stat Methods Med Res 10:195–216PubMedCrossRefGoogle Scholar
  9. 9.
    D’Agostino RB, Lee M-L, Belanger AJ, Cupples LA, Anderson K, Kannel WB (1990) Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham heart study. Stat Med 9:1501–1515PubMedCrossRefGoogle Scholar
  10. 10.
    Walter SD (1980) Prevention for multifactorial diseases. Am J Epidemiol 112(3):409–416PubMedGoogle Scholar
  11. 11.
    Gefeller O (1992) Comparison of adjusted attributable risk estimators. Stat Med 11(16):2083–2091PubMedCrossRefGoogle Scholar
  12. 12.
    Morgenstern H (1983) Morgenstern corrects a conceptual error (Letter). Am J Publ Health 73(6):703–703Google Scholar
  13. 13.
    Korn EL, Graubard BI, Midthune D (1997) Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol 145(1):72–80PubMedGoogle Scholar
  14. 14.
    Basu S, Landis JR (1995) Model-based estimation of population attributable risk under cross-sectional sampling. Am J Epidemiol 142(12):1338–1343PubMedGoogle Scholar
  15. 15.
    Greenland S, Drescher K (1993) Maximum-likelihood-estimation of the attributable fraction from logistic-models. Biometrics 49(3):865–872PubMedCrossRefGoogle Scholar
  16. 16.
    Benichou J, Chow WH, McLaughlin JK, Mandel JS, Fraumeni JF (1998) Population attributable risk of renal cell cancer in Minnesota. Am J Epidemiol 148(5):424–430PubMedGoogle Scholar
  17. 17.
    Wilson PD, Loffredo CA, Correa-Villasenor A, Ferencz C (1998) Attributable fraction for cardiac malformations. Am J Epidemiol 148(5):414–423PubMedGoogle Scholar
  18. 18.
    Wacholder S, Benichou J, Heineman E (1994) Attributable risk—advantages of a broad definition of exposure (vol 140, pg 303,1994). Am J Epidemiol 140(7):668–668Google Scholar
  19. 19.
    Benichou J (1991) Methods of adjustment for estimating the attributable risk in case-control studies; a review. Stat Med 10:1753–1773PubMedCrossRefGoogle Scholar
  20. 20.
    Michaud DS, Spiegelman D, Clinton SK, Willett WC, Giovannucci EL (1999) Total fluid intake, specific beverages and bladder cancer risk in the health professional follow-up study. New England J Med 340:1390–1397CrossRefGoogle Scholar
  21. 21.
    Therneau TM, Grambsch PM (2000) Modeling survival data: extending the cox model. Springer-Verlag, New York, New YorkGoogle Scholar
  22. 22.
    Mezzetti M, Ferraroni M, Decarli A, LaVecchia C, Benichou J (1996) Software for attributable risk and confidence interval estimation in case-control studies. Comput Biomed Res 29(1):63–75PubMedCrossRefGoogle Scholar
  23. 23.
    Benichou J, Gail MH (1990) Variance calculations and confidence-intervals for estimates of the attributable risk based on logistic-models. Biometrics 46(4):991–1003PubMedCrossRefGoogle Scholar
  24. 24.
    Miettinen OS (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 99(5):325–332PubMedGoogle Scholar
  25. 25.
    Third National Health and Nutrition Examination Survey 1989–1994 (1996) NHANES II laboratory data file (CD-ROM). US Department of Health and Human Services National Center for Health Statistics, Hyattsville, MDGoogle Scholar
  26. 26.
    National Center for Health Statistics (1993) 1987 National health interview survey. Government Printing OfficeGoogle Scholar
  27. 27.
    Graubard BI, Fears TR (2005) Standard errors for attributable risk for simple and complex sample designs. Biometrics 61(3):847–855PubMedCrossRefGoogle Scholar
  28. 28.
    Rich-Edwards JW, Spiegelman D, Garland M, Hertzmark E, Hunter DJ, Colditz GA et al (2002) Physical activity, body mass index and ovulatory disorder infertility. Epidemiology 13:184–190PubMedCrossRefGoogle Scholar
  29. 29.
    Morgenstern H, Bursic E (1982) A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. J Community Health 7:292–309PubMedCrossRefGoogle Scholar
  30. 30.
    Drescher K, Becher H (1997) Estimating the generalized impact fraction from case-control data. Biometrics 53(3):1170–1176PubMedCrossRefGoogle Scholar
  31. 31.
    Leung HM, Kupper LL (1981) Comparisons Of Confidence-Intervals For Attributable Risk. Biometrics 37(2):293–302PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departments of Epidemiology, School of Public HealthHarvard UniversityBostonUSA
  2. 2.Departments of Biostatistics, School of Public HealthHarvard UniversityBostonUSA
  3. 3.National Center in HIV Epidemiology and Clinical ResearchUniversity of New South WalesDarlinghurstAustralia

Personalised recommendations