Cancer Causes & Control

, Volume 17, Issue 4, pp 489–500

Biological Clocks and Shift Work: Circadian Dysregulation and Potential Long-term Effects

Special Section on Cancer and Rhythm Original Paper

Abstract

Long-term epidemiologic studies on large numbers of night and rotating shift workers have suggested an increase in the incidence of breast and colon cancer in these populations. These studies suffer from poor definition and quantification of the work schedules of the exposed subjects. Against this background, the pathophysiology of phase shift and phase adaptation is reviewed. A phase shift as experienced in night and rotating shift work involves desynchronization at the molecular level in the circadian oscillators in the central nervous tissue and in most peripheral tissues of the body. There is a change in the coordination between oscillators with transient loss of control by the master-oscillator (the Suprachiasmatic Nucleus, SCN) in the hypothalamus. The implications of the pathophysiology of phase shift are discussed for long-term health effects and for the design of ergonomic work schedules minimizing the adverse health effects upon the worker.

Keywords

Shift work Circadian desynchronization Risk factors Heart disease Cancer Ergonomics 

References

  1. 1.
    Rutenfranz J, Knauth P, Angersbach D (1981) Shift work research issues. Biological Rhythms, Sleep and Shift Work. In: Johnson LC, Tepas TI, Colquhoun WP, Colligan MJ (eds) Advances in Sleep Research, Vol. 7. SP Medical & Scientific Books, New York, pp 165–196Google Scholar
  2. 2.
    Pasqua IC, Moreno CRC (2004) The nutritional status and eating habits of shift workers: a chronobiologic approach. Chronobiol Int 21:949–960CrossRefPubMedGoogle Scholar
  3. 3.
    Waterhouse J, Buckey P, Edwards B, Reilly T (2003) Measurement of, and some reasons for differences in eating habits between day and night workers. Chronobiol Int 20:1075–1092PubMedGoogle Scholar
  4. 4.
    Fischer FM, Rotenberg L, de Castro Moreno CR (2004) Equity and working time. A challenge to achieve. Chronobiol Int 21:813–829CrossRefPubMedGoogle Scholar
  5. 5.
    Al-Naimi S, Hampton SM, Richard P, Tzung C, Morgan LM (2004) Postprandial metabolic profiles following meals and snacks eaten during simulated night and day shift work. Chronobiol Int 21:937–947CrossRefPubMedGoogle Scholar
  6. 6.
    Morgan L, Hampton S, Gibbs M, Arendt J (2003) Circadian aspects of postprandial metabolism. Chronobiol Int 20:795–808CrossRefPubMedGoogle Scholar
  7. 7.
    Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shiftwork and having a metabolic syndrome X? Results from a population based study of 27,485 people. Occup Environ Med 58:747–752CrossRefPubMedGoogle Scholar
  8. 8.
    Knutson A (1989) Relationships between serum triglycerides and gamma-glutamyltransferase among shift and day workers. J Intern Med 226(5):337–339Google Scholar
  9. 9.
    Romon M, Nuttens MC, Fievet C, etal. (1992) Increased triglyceride levels in shift workers. Am J Med 93(3):259–262CrossRefPubMedGoogle Scholar
  10. 10.
    Kawachi I, Colditz GA, Stampfer MJ, etal. (1995) Prospective study of shift work and risk of coronary heart disease in women. Circulation 92(11):3178–3182PubMedGoogle Scholar
  11. 11.
    Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18:716–738PubMedGoogle Scholar
  12. 12.
    Van Cauter E, Plat L, Copinschi G (1998) Interrelations between sleep and the somatotropic axis. Sleep 21:553–566PubMedGoogle Scholar
  13. 13.
    Lac G, Chamoux A (2004) Biological and physiological responses to two rapid shiftwork schedules. Ergonomics 47:1339–1349PubMedGoogle Scholar
  14. 14.
    Hennig J, Kieferdorf P, Moritz C, Huwe S, Netter P (1998) Changes in cortisol secretion during shiftwork: implications for tolerance to shiftwork. Ergonomics 41(5):610–621PubMedGoogle Scholar
  15. 15.
    Ekstrand K, Bostrom PA, Arborelius M, Nilsson JA, Lindell SE (1996) Cardiovascular risk factors in commercial flight aircrew officers compared with those in the general population. Angiology 47(11):1089–1094PubMedGoogle Scholar
  16. 16.
    Tenkanen L, Sjöblom T, Kalimo R, Alikoski T, Härmä M (199) Shift work occupation and coronary heart disease over 6 years of follow up in the Helsinki Heart Study. Scand J Work Environ Health 23:257–265Google Scholar
  17. 17.
    Härmä M (2001) Shift work and cardiovascular disease – from etiologic studies to prevention through scheduling. Scand J Env Health 27:85–86Google Scholar
  18. 18.
    Kristensen TS (1989) Cardiovascular diseases and the work environment. A critical review of the epidemiological literature on nonchemical factors. Scand J Work Environ Health 15:165–179PubMedGoogle Scholar
  19. 19.
    Knutsson A (2004) Methodological aspects of shift-work research. Chronobiol Int 21:1037–1047PubMedGoogle Scholar
  20. 20.
    Knutsson A, Hallquist J, Reuterwall C, Theorell T, Akerstedt T (1999) Shiftwork and myocardial infarction: a case-control study. Occup Environ Med 56(1):46–50PubMedGoogle Scholar
  21. 21.
    Schernhammer ES, Laden F, Speizer FE, etal. (2001) Rotating night shifts and risk of breast cancer in women participating in the Nurses’ health study. J Natl Cancer Inst 93:1563–1568PubMedGoogle Scholar
  22. 22.
    Schernhammer ES, Laden F, Speizer FE, etal. (2003) Night-Shift work and risk of colorectal cancer in the Nurses’ health study. J Natl Cancer Inst 95:825–828Google Scholar
  23. 23.
    Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period 2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50PubMedGoogle Scholar
  24. 24.
    Davis S, Mirick DK, Stevens RG (2001) Night-Shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93:1557–1562PubMedGoogle Scholar
  25. 25.
    Reynolds P, Cone J, Layefsky M, Goldberg DE, Hurley S (2002) Cancer incidence in California flight attendants (United States). Cancer Causes Control 13:317–324PubMedGoogle Scholar
  26. 26.
    Touitou Y, Haus E (eds) (1992) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Heidelberg pp. 730Google Scholar
  27. 27.
    Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290CrossRefPubMedGoogle Scholar
  28. 28.
    Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941CrossRefPubMedGoogle Scholar
  29. 29.
    Moser, M, Frühwirth, M, Penter, R, Winker, R 2006Why life oscillates – from a topographical towards a functional chronobiologyCancer Causes Control17591599Google Scholar
  30. 30.
    Haus E, Touitou Y (1992) Principles of clinical chronobiology. In: Touitou Y, Haus E (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Berlin, pp 6–34Google Scholar
  31. 31.
    Hildebrandt G, Moser M, Lehofer M (1998) Chronobiology und Chronomedicine – Biologic Rhythms Medical Consequences (in German). Hippokrates, StuttgartGoogle Scholar
  32. 32.
    Bjarnason GA, Jordan R (2002) Rhythms in human gastrointestinal mucosa and skin. Chronobiol Internat 19:129–140Google Scholar
  33. 33.
    Challet E, Pévet P (2003) Interaction between photic and non-photic stimuli to synchronize the master circadian clock in mammals. Front Biosci 8:246–257Google Scholar
  34. 34.
    Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493CrossRefPubMedGoogle Scholar
  35. 35.
    Hara R, Wan K, Wakamatsu H, etal. (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278PubMedGoogle Scholar
  36. 36.
    Nagano M, Adachi A, Nakahama K, etal. (2003) An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 23:6141–6151PubMedGoogle Scholar
  37. 37.
    Sakamoto K, Ishida N (2000) Light-induced phase-shifts in the circadian expression rhythm of mammalian Period genes in the mouse heart. Eur J Neurosci 12:4003–4006CrossRefPubMedGoogle Scholar
  38. 38.
    Harris W (1977) Fatigue, circadian rhythms, and truck accidents. In: Mackie R (ed) Vigilance Theory, Operational Performance, and Physiological Correlate. Plenum Press, New York, pp 1033–1046Google Scholar
  39. 39.
    Hildebrandt G, Rohmert W, Rutenfranz J (1974) 12 and 24 h rhythms in error frequency of locomotive drivers and the influence of tiredness. Int J Chronobiol 2:175–180PubMedGoogle Scholar
  40. 40.
    Ribak J, Ashkenazi IE, Klepfish A, etal. (1983) Diurnal rhythmicity and air force flight accidents due to pilot error. Aviat Space Envir Med 54:1096–1099Google Scholar
  41. 41.
    Folkard S, Akerstedt T (2004) Trends in the risk of accidents and injuries and their implications for models of fatigue and performance Aviation. Space Environ Med 75:A161–A167Google Scholar
  42. 42.
    Folkard S, Lombardi DA (2004) Toward a ‘Risk Index’ to assess work schedules. Chronbiol Int 21:1063–1072Google Scholar
  43. 43.
    Haus E (2002) Chronobiology of the mammalian response to ionizing radiation potential applications in oncology. Chronobiol Int 19(1):77–100CrossRefPubMedGoogle Scholar
  44. 44.
    Haus E, Touitou Y (1992) Principles of clinical chronobiology. In: Touitou Y, Haus E (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Heidelberg, pp 6–34Google Scholar
  45. 45.
    Winget CM, Soliman MRI, Holley DC, Meylor JS (1992) Chronobiology of physical performance and sports medicine. In: Touitou Y, Haus E (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Heidelberg, pp 230–242Google Scholar
  46. 46.
    Monk TH (1992) Chronobiology of mental performance. In: Touitou Y, Haus E (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Heidelberg, pp 208–213Google Scholar
  47. 47.
    Mormont MC, Waterhouse J (2002) Contribution of the rest-activity circadian rhythm to quality of life in cancer patients. Chronobiol Int 19(1):313–323PubMedGoogle Scholar
  48. 48.
    Haus E, Nicolau GY, Lakatua D, Sackett-Lundeen L (1988) Reference values for chronopharmacology. Annu Rev Chronopharmacol 4:333–424Google Scholar
  49. 49.
    Haus E, Sackett-Lundeen L (2003) Variability of the circadian time structure in clinically healthy subjects. Interactions between activity patterns and time of food uptake. Shiftwork Internat Newslett 20(2):89Google Scholar
  50. 50.
    Waterhouse J, Nevill A, Finnegan J, et al. (2005) Further assessments of the relationship between jet lag and some of its symptoms. Chronobiol Int 22(1):121–136PubMedGoogle Scholar
  51. 51.
    Aschoff J, Hoffman K, Pohl H, Wever R (1975) Re-entrainment of circadian rhythms after phase-shifts to the zeitgeber. Chronobiologia 2:23–78PubMedGoogle Scholar
  52. 52.
    Klein K, Wegmann H (1974) The resynchronization of human circadian rhythms after transmeridian flights as a result of flight direction and mode of activity. In: Scheving LE (ed.) Chronobiology. Igaku-Shoin, Tokyo, pp 564–570Google Scholar
  53. 53.
    Klein K, Wegmann H, Athanassenas G, Hohloweck H, Kuklinski P (1976) Air operations and circadian performance rhythms. Aviation Space Environ Med 47:221–231Google Scholar
  54. 54.
    Beljan JR, Rosenblatt LS, Hetherington NW, etal. (1972) Human performance in aviation environment. NASA Rep NAS2-6657, part I-AGoogle Scholar
  55. 55.
    Lowden A, Akerstedt T (1998) Retaining home-base sleep hours to prevent jet lag in connection with a westward flight across nine time zones. Chronobiol Int 15(4):365–376PubMedGoogle Scholar
  56. 56.
    Reynolds P, Cone J, Layefsky M, Goldberg DE, Hurley S (2002) Cancer incidence in California flight attendants (United States). Cancer Causes Control 13(4):317–324CrossRefPubMedGoogle Scholar
  57. 57.
    Rafnsson V, Tulinius H, Jonasson JG, Hrafnkelsson J (2001) Risk of breast cancer in female flight attendants: a population based study (Iceland). Cancer Causes Control 12(5):95–101PubMedGoogle Scholar
  58. 58.
    Pukkala E, Auvinen A, Wahlberg G (1995) Incidence of cancer among Finnish airline cabin attendants, 1967–1992. BMJ 311:649–652PubMedGoogle Scholar
  59. 59.
    Butler GC, Nicholas J, Lackland DT, Friedberg W (2000) Perspectives of those impacted: airline pilots perspective. Health Phys 79:602–607PubMedGoogle Scholar
  60. 60.
    Friedberg W, Duke FE, Snyder L, etal. (1993) The cosmic radiation environment at air carrier flight altitudes and possible associated health risks. Radiat Prot Dosim 48:21–25Google Scholar
  61. 61.
    Nicholas JS, Lackland DT, Butler GC, etal. (1998) Cosmic radiation and magnetic field exposure to airline flight crews. Am J Ind Med 34:574–580CrossRefPubMedGoogle Scholar
  62. 62.
    Dumont M, Benhaberou-Brun D, Paquet J (2001) Profile of 24-h light exposure and circadian phase of melatonin secretion in night workers. J Biol Rhythms 18(5):502–511Google Scholar
  63. 63.
    Reinberg A, Andlauer P, Bourdeleau P, Levi F, Bicakova-Rocher A (1984) Rythme circadien de la force des mains droite et gauche: désynchronisation chez certains travailleurs postés. CR Acad Sci 299:633–636Google Scholar
  64. 64.
    Reinberg A, Motohashi Y, Bourdeleau P, etal. (1989) Internal desynchronization of circadian rhythms and tolerance of shift work. Chronobiologia 16(1):21–34PubMedGoogle Scholar
  65. 65.
    Reinberg A (2003) Travail posté, travail de nuit, vols transméridiens: effets et tolérance. In: Reinberg A (ed.) Chronobiologie médicale, Chronothérapeutique. Flammarion, Paris, pp 189–203Google Scholar
  66. 66.
    Motohashi Y (1989) Desynchronization of oral temperature and grip strength circadian rhythms in healthy subjects with irregular sleep-wake behavior. Chronobiologia 16(2):162–163Google Scholar
  67. 67.
    Ross JK, Arendt J, Horne J, Haston W (1995) Night-shift work during Antarctic Winter: sleep characteristics and adaptation with bright light treatment. Physiol Behav 57:1169–1174CrossRefPubMedGoogle Scholar
  68. 68.
    Barnes RG, Forbes MJ, Arendt J (1998) Shift type and season affect adaptation of the 6-sulphatoxymelatonin rhythm in offshore oil rig workers. Neurosci Lett 252:179–182CrossRefPubMedGoogle Scholar
  69. 69.
    Bjorvatn B, Kecklund G, Akerstedt T (1999) Bright light treatment used for adaptation to nightwork and re-adaptation back to day life. A field study at an oil platform in the North Sea. J Sleep Res 8:105–112CrossRefPubMedGoogle Scholar
  70. 70.
    Gibbs M, Hamptom S, Morgan L, Arendt J (2002) Adaptation of the circadian rhythm of 6-sulphatoxy melatonin to a shift schedule of seven nights followed by seven days in offshore oil installation workers. Neurosci Lett 325:91–94CrossRefPubMedGoogle Scholar
  71. 71.
    Rodrigues MC, Nogueira Pires ML, Benedito-Silva AA, Tufik S (2004) Sleep parameters among offshore workers: an initial assessment in the Campos Basin, Rio de Janeiro, Brazil. Chronobiol Int 21:889–897Google Scholar
  72. 72.
    Akerstedt T (2003) Shiftwork and disturbed sleep-wakefulness. Occup Med 53:89–94CrossRefGoogle Scholar
  73. 73.
    Folkard S, Akerstedt T, Macdonald I, Tucker P, Spencer MB (1999) Beyond the three process model of alertness: estimating phase, time on shift, and successive night effects. J Biol Rhythms 14(6):577–587CrossRefPubMedGoogle Scholar
  74. 74.
    Spiegel K, Leproult R, VanCauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435–1439CrossRefPubMedGoogle Scholar
  75. 75.
    Schedlowski M, Teves U (eds) Born in Psychoneuroimmunology: An Interdisciplinary Introduction, Plenum Publ, NY, pp. 417–442Google Scholar
  76. 76.
    Segawa K, Nakazawa S, Tsukamoto Y, etal. (1987) Peptic ulcer is prevalent among shift workers. Digest Dis Sci 32(5):449–453CrossRefPubMedGoogle Scholar
  77. 77.
    Bélanger PM, Bruguerolle B, Labrecque G (1997) Rhythms in pharmacokinetics; absorption, distribution, metabolism and excretion. In: Redfern P, Lemmer B (eds) Physiology and Pharmacology of Biological Rhythms. Spinger-Verlag, Berlin, pp 177–204Google Scholar
  78. 78.
    Labrecque G, Beauchamp D (2003) Rhythms and pharmacokinetics. In: Redfern PH (ed) Chronotherapeutics. Pharmaceutical Press, London, pp 75–110Google Scholar
  79. 79.
    Witte K, Lemmer B (2003) Rhythms and pharmacodynamics. In: Redfern PH (ed) Chronotherapeutics. Pharmaceutical Press, London, pp 111–126Google Scholar
  80. 80.
    Dagan Y (2002) Circadian rhythm sleep disorders (CRSD) Sleep Med Rev 6:45–54CrossRefPubMedGoogle Scholar
  81. 81.
    Levi F, Zidani R, Misset JL (1997) Randomized multicenter trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. Lancet 360:681–686Google Scholar
  82. 82.
    Hrushesky WJ, Bjarnason GA (1993) Circadian cancer therapy. J Clin Oncol 11(7):1403–1417PubMedGoogle Scholar
  83. 83.
    Reinberg AE (1989) Chronopharmacology of corticosteroids and ACTH. In: Lemmer B (ed) Dekker, New York, pp 137–167Google Scholar
  84. 84.
    Lemmer B (2003) Rhythms in therapeutics of cardiovascular disease. In: Redfern PH (ed) Chronotherapeutics. Pharmaceutical Press, London, pp 193–209Google Scholar
  85. 85.
    Reinberg AE (2003) Chronotoxicité et chronotolerance. In: Reinberg AE (ed.) Chronobiologie médicale, Chronotherapeutique. Flammarion, Paris, pp 79–91Google Scholar
  86. 86.
    Hansen J (2001) Increased breast cancer risk among women who work predominantly at night. Epidemiology 12:74–77CrossRefPubMedGoogle Scholar
  87. 87.
    Arendt J (1992) The Pineal. In: Touitou Y, Haus E (eds) Biologic Rhythms in Clinical and Laboratory Medicine. Springer-Verlag, Heidelberg, pp 348–362Google Scholar
  88. 88.
    Travis RC, Allen DS, Fentiman IS, Key TJ (2004) Melatonin and breast cancer: a prospective study J Natl Cancer Inst 96:475–482PubMedGoogle Scholar
  89. 89.
    Dauchy RT, Blask DE, Sauer LA, Brainard GC, Krause JA (1999) Dim light during darkness stimulates tumor progression by enhancing tumor fatty acid uptake and metabolism. Cancer Lett 144:131–136CrossRefPubMedGoogle Scholar
  90. 90.
    Blask DE, Dauchy RT, Sauer LA, Krause JA, Brainerd GC (2002) Light during darkness, melatonin suppression and cancer progression. Neuroendocrinol Lett 23:52–56PubMedGoogle Scholar
  91. 91.
    Blask DE, Dauchy RT, Sauer LA, Krause JA, Brainerd GC (2003) Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression. Breast Cancer Res Treat 79:313–320CrossRefPubMedGoogle Scholar
  92. 92.
    Erren TC, Reiter RJ, Pinger A, Piekavski C, Erren M (2004) The chronosense – what light tells man about biological time. Med Hypotheses 63(3):1074–1080PubMedGoogle Scholar
  93. 93.
    Hanssen T, Heyden T, Sundberg T, Wetterberg L (1977) Effect of propanolol on serum melatonin. Lancet II 2(8032):309–310Google Scholar
  94. 94.
    Cowen PJ, Fraser S, Sammons R, Green AR (1983) Atenolol reduces plasma melatonin concentration in man. Br J Clin Parmacol 15:579–581Google Scholar
  95. 95.
    Filipski E, King VM, Xiao Mei Li, etal. (2002) Host circadian clock as control point in tumor progression. J Natl Cancer Inst 94:690–697PubMedGoogle Scholar
  96. 96.
    Bougrine S, Mollard R, Iguazi G, Coblentz A (1995) Appropriate use of bright light promotes a durable adaptation to night shifts and accelerates readjustment during recovery after a period of night shifts. Work Stress 9:314–326PubMedGoogle Scholar
  97. 97.
    Eastman CI, Martin SK (1999) How to use light and dark to produce circadian adaptation to night shift work. Ann Med 31:87–98PubMedGoogle Scholar
  98. 98.
    Crowley SJ, Lee C, Tseng CY, Fogg LF, Eastman CI (2003) Combinations of bright light, scheduled dark, sunglasses, and melatonin to facilitate circadian entrainment to night shift work. J Biol Rhythms 18:513–523CrossRefPubMedGoogle Scholar
  99. 99.
    Härmä M, Hakola T, Kandolin I, Sallinon I, Virkkala J, Bonnefond A (2003) A controlled intervention study of a quickly forward rotating shift system among young and elderly maintenance workers. SIN 20(2):86 Google Scholar
  100. 100.
    Bubenik GA, Blask DE, Brown GM, etal. (1998) Prospects of the clinical utilization of melatonin. Biol Signals Recept 7:195–219CrossRefPubMedGoogle Scholar
  101. 101.
    Aschoff J (1978) Features of circadian rhythms relevant for the design of shift schedules. Ergonomics 39:739–754Google Scholar
  102. 102.
    Hakola T, Härmä M (2001) Evaluation of a fast forward rotating shift schedule in the steel industry with a special focus on ageing and sleep. J Human Ergol 30:315–319Google Scholar
  103. 103.
    Orth-Gomer K (1983) Intervention on coronary risk factors by adapting a shift work schedule to biologic rhythmicity. Psychosom Med 45(5):407–415PubMedGoogle Scholar
  104. 104.
    Prunier-Poulmaire P, Gadbois C, Derriiennic F (2003) Irregular working schedules and health: results of an epidemiological study. SIN 20(2):153Google Scholar
  105. 105.
    Costa G, Åkerstedt T, Nachreiner F, etal. (2004) Flexible working hours, health and well-being in Europe: some considerations from a SALTSA project. Chronobiol Int 21:831–844CrossRefPubMedGoogle Scholar
  106. 106.
    Giebel O, Janssen D, Schomann C, Nachreiner F (2004) A new approach for evaluating flexible working hours. Chronobiol Int 21:1015–1024CrossRefPubMedGoogle Scholar
  107. 107.
    Gärtner J (2004) Conflicts between employee preferences and ergonomic recommendations in shift scheduling: regulation based on consent is not sufficient. Rev Saúde Pública 38(Suppl):65–71Google Scholar
  108. 108.
    Kogi K (2004) Linking better shiftwork arrangements with safety and health management systems. Rev Saúde Pública 38(Suppl):72–79PubMedGoogle Scholar
  109. 109.
    Buxton OM, Lee CW, L’Hermite-Balériaux M, Turek FW, Van Cauter E (2003) Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol 284:R714–R724PubMedGoogle Scholar
  110. 110.
    Geoffrian M, Brun J, Chazot G, Claustrat B (1998) The physiology and pharmacology of melatonin in humans. Horm Res 49:136–141Google Scholar
  111. 111.
    Reinberg A, Smolensky MH, Labrecque G (1988) The hunting of the wonder pill for resetting all biological clocks. Ann Rev Chronopharmacol 4:171–208Google Scholar
  112. 112.
    Simpson HW, Pauson A, Cornelissen G (1989) The chronopathology of breast pre-cancer. Chronobiologia 16(4):365–372PubMedGoogle Scholar
  113. 113.
    Wargovich MJ, Chang P, Velasco M, Sinicrope F, Eisenbrodt E, Sellin J (2004) Expression of cellular adhesion proteins and abnormal glycoproteins in human aberrant crypt foci. Appl Immunohistochem Mol Morphol 12(4):350–355PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Laboratory Medicine & PathologyUniversity of Minnesota, Health Partners Medical Group, Regions HospitalSt. PaulUSA
  2. 2.School of Public HealthUniversity of Texas – HoustonHoustonUSA

Personalised recommendations