Cancer Causes & Control

, Volume 17, Issue 4, pp 601–609 | Cite as

The Use of Chronobiotics in the Resynchronization of the Sleep–wake Cycle

  • Daniel P. Cardinali
  • Analía M. Furio
  • María P. Reyes
  • Luis I. Brusco
Special Section on Cancer and Rhythm Original Paper


Treatment of circadian rhythm disorders, whether precipitated by intrinsic factors (e.g., sleep disorders, blindness, mental disorders, aging) or by extrinsic factors (e.g., shift work, jet-lag) has led to the development of a new type of agents called ‘chronobiotics’, among which melatonin is the prototype. The term ‘chronobiotic’ defines as a substance capable of shifting the phase of the circadian time system thus re-entraining circadian rhythms. Melatonin administration synchronizes the sleep–wake cycle in blind people and in individuals suffering from delayed sleep phase syndrome or jet lag, as well in shift-workers. The effect of melatonin on sleep is probably the consequence of increasing sleep propensity (by inducing a fall in body temperature) and of a synchronizing effect on the circadian clock (chronobiotic effect). We successfully employed the timely use of three factors (melatonin treatment, exposure to light, physical exercise) to hasten the resynchronization after transmeridian flights comprising 12–13 time zones, from an average of 8–10 days to about 2 days. Daily melatonin production decreases with age, and in several pathologies, attaining its lowest values in Alzheimer’s dementia patients. About 45% of dementia patients have severe disruptions in their sleep–wakefulness cycle. Both in aged subjects having very minimal sleep disorders as well as in demented patients with a very severe disorganization of the sleep–wake cycle, melatonin treatment reduced the variability of sleep onset and restored sleep.


Circadian rhythms Jet lag Shift work Melatonin Alzheimer’s disease 



These studies were supported by the University of Buenos Aires (ME 075), the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina and the Agencia Nacional de Promoción Científica y Tecnológica (PICT 14087), Argentina.


  1. 1.
    Buijs RM, Van Eden CG, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177:17–26CrossRefPubMedGoogle Scholar
  2. 2.
    Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661CrossRefPubMedGoogle Scholar
  3. 3.
    Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113:103–112CrossRefPubMedGoogle Scholar
  4. 4.
    Smolensky MH, Haus E (2001) Circadian rhythms and clinical medicine with applications to hypertension. Am J Hypertens 14:280S–290SCrossRefPubMedGoogle Scholar
  5. 5.
    Cermakian N, Boivin DB (2003) A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 42:204–220CrossRefPubMedGoogle Scholar
  6. 6.
    Folkard S, Tucker P (2003) Shift work, safety and productivity. Occup Med (Lond) 53:95–101CrossRefGoogle Scholar
  7. 7.
    Knutsson A, Boggild H (2000) Shift work and cardiovascular disease: review of disease mechanisms. Rev Environ Health 15:359–372PubMedGoogle Scholar
  8. 8.
    Hobson JA, Pace-Schott EF (2002) The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 3:679–693CrossRefPubMedGoogle Scholar
  9. 9.
    Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605PubMedGoogle Scholar
  10. 10.
    Dorrian J, Lamond N, Holmes AL, etal. (2003) The ability to self-monitor performance during a week of simulated night shifts. Sleep 26:871–877PubMedGoogle Scholar
  11. 11.
    Lamond N, Dorrian J, Roach GD, etal. (2003) The impact of a week of simulated night work on sleep, circadian phase, and performance. Occup Environ Med 60:e13CrossRefPubMedGoogle Scholar
  12. 12.
    Dawson D, Armstrong SM (1996) Chronobiotics – drugs that shift rhythms. Pharmacol Ther 69:15–36CrossRefPubMedGoogle Scholar
  13. 13.
    Reiter RJ, Tan DX, Burkhardt S, Manchester LC (2001) Melatonin in plants. Nutr Rev 59:286–290PubMedGoogle Scholar
  14. 14.
    Cardinali DP, Pévet P (1998) Basic aspects of melatonin action. Sleep Med Rev 2:175–190CrossRefPubMedGoogle Scholar
  15. 15.
    Kennaway DJ, Wright H (2002) Melatonin and circadian rhythms. Curr Top Med Chem 2:199–209CrossRefPubMedGoogle Scholar
  16. 16.
    Lewy AJ, Bauer VK, Ahmed S, etal. (1998) The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int 15:71–83PubMedGoogle Scholar
  17. 17.
    Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI (2003) Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci 8:D1093–D1108PubMedGoogle Scholar
  18. 18.
    Lavie P (2001) Sleep–wake as a biological rhythm. Annu Rev Psychol 52:277–303CrossRefPubMedGoogle Scholar
  19. 19.
    Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU (2001) Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 86:4727–4730CrossRefPubMedGoogle Scholar
  20. 20.
    Skene DJ, Lockley SW, Arendt J (1999) Melatonin in circadian sleep disorders in the blind. Biol Signals Recept 8:90–95CrossRefPubMedGoogle Scholar
  21. 21.
    Cardinali DP, Gvozdenovich E, etal. (2002) A double blind-placebo controlled study on melatonin efficacy to reduce anxiolytic benzodiazepine use in the elderly. Neuroendocrinol Lett 23:55–60PubMedGoogle Scholar
  22. 22.
    Cardinali DP, Brusco LI, Liberczuk C, Furio AM (2002) The use of melatonin in Alzheimer’s disease. Neuroendocrinol Lett 23:26–29Google Scholar
  23. 23.
    Cardinali DP, Bortman GP, Liotta G, etal. (2002) A multifactorial approach employing melatonin to accelerate resynchronization of sleep–wake cycle after a 12 time-zone westerly transmeridian flight in elite soccer athletes. J Pineal Res 32:41–46CrossRefPubMedGoogle Scholar
  24. 24.
    Arendt J (2003) Importance and relevance of melatonin to human biological rhythms. J Neuroendocrinol 15:427–431CrossRefPubMedGoogle Scholar
  25. 25.
    Beaumont M, Batejat D, Pierard C, etal. (2004) Caffeine or melatonin effects on sleep and sleepiness after rapid eastward transmeridian travel. J Appl Physiol 96:50–58PubMedGoogle Scholar
  26. 26.
    Herxheimer A, Petrie KJ (2002) Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev CD001520Google Scholar
  27. 27.
    Lewy AJ, Ahmed S, Sack RL (1996) Phase shifting the human circadian clock using melatonin. Behav Brain Res 73:131–134PubMedGoogle Scholar
  28. 28.
    McCurry SM, Reynolds CF, Ancoli-Israel S, Teri L, Vitiello MV (2000) Treatment of sleep disturbance in Alzheimer’s disease. Sleep Med Rev 4:603–628CrossRefPubMedGoogle Scholar
  29. 29.
    Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M (1999) Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep–waking. Biol Psychiatry 45:417–421CrossRefPubMedGoogle Scholar
  30. 30.
    Magri F, Sarra S, Cinchetti W, etal. (2004) Qualitative and quantitative changes of melatonin levels in physiological and pathological aging and in centenarians. J Pineal Res 36:256–261CrossRefPubMedGoogle Scholar
  31. 31.
    Hoogendijk WJ, van Someren EJ, Mirmiran M, etal. (1996) Circadian rhythm-related behavioral disturbances and structural hypothalamic changes in Alzheimer’s disease. Int Psychogeriatr 8:245–252PubMedGoogle Scholar
  32. 32.
    Giubilei F, Patacchioli FR, Antonini G, etal. (2001) Altered circadian cortisol secretion in Alzheimer’s disease: clinical and neuroradiological aspects. J Neurosci Res 66:262–265CrossRefPubMedGoogle Scholar
  33. 33.
    Harper DG, Stopa EG, McKee AC, etal. (2001) Differential circadian rhythm disturbances in men with Alzheimer disease and frontotemporal degeneration. Arch Gen Psychiatry 58:353–360PubMedGoogle Scholar
  34. 34.
    Swabb DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342:37–44Google Scholar
  35. 35.
    van Someren EJW (2000) Circadian rhythms and sleep in human aging. Chronobiol Int 17:233–243PubMedGoogle Scholar
  36. 36.
    Skene DJ, Swaab DF (2003) Melatonin rhythmicity: effect of age and Alzheimer’s disease. Exp Gerontol 38:199–206CrossRefPubMedGoogle Scholar
  37. 37.
    Stopa EG, Volicer L, Kuo-Leblanc V, etal. (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58:29–39PubMedGoogle Scholar
  38. 38.
    Iguchi H, Kato KI, Ibayashi H (1982) Age-dependent reduction in serum melatonin concentrations in healthy human subjects. J Clin Endocrinol Metab 55:27–29Google Scholar
  39. 39.
    Dori D, Casale G, Solerte SB, etal. (1994) Chrono-neuroendocrinological aspects of physiological aging and senile dementia. Chronobiologia 21:121–126PubMedGoogle Scholar
  40. 40.
    Girotti L, Lago M, Ianovsky O, etal. (2000) Low urinary 6-sulphatoxymelatonin levels in patients with coronary artery disease. J Pineal Res 29:138–142CrossRefPubMedGoogle Scholar
  41. 41.
    Siegrist C, Benedetti C, Orlando A, etal. (2001) Lack of changes in serum prolactin, FSH, TSH, and estradiol after melatonin treatment in doses that improve sleep and reduce benzodiazepine consumption in sleep-disturbed, middle-aged, and elderly patients. J Pineal Res 30:34–42CrossRefPubMedGoogle Scholar
  42. 42.
    Mishima K, Okawa M, Hozumi S, Hishikawa Y (2000) Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest–activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons. Chronobiol Int 17:419–432CrossRefPubMedGoogle Scholar
  43. 43.
    Luboshitzky R, Shen-Orr Z, Tzischichinsky O, Maldonado M, Herer P, Lavie P (2001) Actigraphic sleep–wake patterns and urinary 6-sulfatoxymelatonin excretion in patients with Alzheimer’s disease. Chronobiol Int 18:513–524CrossRefPubMedGoogle Scholar
  44. 44.
    Mishima K, Okawa M, Shimizu T, Hishikawa Y (2001) Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J Clin Endocrinol Metab 86:129–134CrossRefPubMedGoogle Scholar
  45. 45.
    Skene DJ, Vivien-Roels B, Sparks DL, etal. (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 528:170–174CrossRefPubMedGoogle Scholar
  46. 46.
    Uchida K, Okamoto N, Ohara K, Morita Y (1996) Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res 717:154–159CrossRefPubMedGoogle Scholar
  47. 47.
    Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon 4/4 genotype. J Clin Endocrinol Metab 84:323–327CrossRefPubMedGoogle Scholar
  48. 48.
    Ohashi Y, Okamoto N, Uchida K, Iyo M, Mori N, Morita Y (1999) Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer’s type. Biol Psychiatry 45:1646–1652CrossRefPubMedGoogle Scholar
  49. 49.
    Ferrari E, Arcaini A, Gornati R, etal. (2000) Pineal and pituitary–adrenocortical function in physiological aging and in senile dementia. Exp Gerontol 35:1239–1250CrossRefPubMedGoogle Scholar
  50. 50.
    Savaskan E, Olivieri G, Meier F, etal. (2002) Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res 32:59–62CrossRefPubMedGoogle Scholar
  51. 51.
    Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF, (2003) Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35:125–130CrossRefPubMedGoogle Scholar
  52. 52.
    Taylor JL, Friedman L, Sheikh J, Yesavage JA (1997) Assessment and management of “sundowning” phenomena. Semin Clin Neuropsychiatry 2:113–122PubMedGoogle Scholar
  53. 53.
    McGaffigan S, Bliwise DL (1997) The treatment of sundowning. A selective review of pharmacological and nonpharmacological studies. Drugs Aging 10:10–17PubMedGoogle Scholar
  54. 54.
    Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134PubMedGoogle Scholar
  55. 55.
    Hall NF, Gale CR (2002) Prevention of age related macular degeneration. BMJ 325:1–2CrossRefPubMedGoogle Scholar
  56. 56.
    Fainstein I, Bonetto A, Brusco LI, Cardinali DP (1997) Effects of melatonin in elderly patients with sleep disturbance. A pilot study. Curr Ther Res 58:990–1000CrossRefGoogle Scholar
  57. 57.
    Jean-Louis G, von Gizycki H, Zizi F (1998) Melatonin effects on sleep, mood, and cognition in elderly with mild cognitive impairment. J Pineal Res 25:177–183PubMedGoogle Scholar
  58. 58.
    Brusco LI, Marquez M, Cardinali DP (1998) Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease. Neuroendocrinol Lett 19:111–115Google Scholar
  59. 59.
    Brusco LI, Marquez M, Cardinali DP (1998) Monozygotic twins with Alzheimer’s disease treated with melatonin: case report. J Pineal Res 25:260–263PubMedGoogle Scholar
  60. 60.
    Cohen-Mansfield J, Garfinkel D, Lipson S (2000) Melatonin for treatment of sundowning in elderly persons with dementia. Arch Gerontol Geriatr 31:65–76CrossRefPubMedGoogle Scholar
  61. 61.
    Mahlberg R, Kunz D, Sutej I, Kuhl KP, Hellweg R (2004) Melatonin treatment of day–night rhythm disturbances and sundowning in Alzheimer disease: an open-label pilot study using actigraphy. J Clin Psychopharmacol 24:456–459PubMedGoogle Scholar
  62. 62.
    Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S (2003) Double blind study of melatonin effects on the sleep–wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch 70:334–341CrossRefPubMedGoogle Scholar
  63. 63.
    Singer C, Tractenberg RE, Kaye J, etal. (2003) A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 26:893–901PubMedGoogle Scholar
  64. 64.
    Monti JM, Alvarino F, Cardinali D, Savio I, Pintos A (1999) Polysomnographic study of the effect of melatonin on sleep in elderly patients with chronic primary insomnia. Arch Gerontol Geriatr 28:85–98CrossRefPubMedGoogle Scholar
  65. 65.
    van Coevorden A, Mockel J, Laurent E, etal. (1991) Neuroendocrine rhythms and sleep in aging men. Am J Physiol 260:E651–E661PubMedGoogle Scholar
  66. 66.
    Pappolla MA, Sos M, Omar RA, etal. (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci 17:1683–1690PubMedGoogle Scholar
  67. 67.
    Daniels WM, van Rensburg SJ, van Zyl JM, Taljaard JJ (1998) Melatonin prevents beta-amyloid-induced lipid peroxidation. J Pineal Res 24:78–82PubMedGoogle Scholar
  68. 68.
    Song W, Lahiri DK (1997) Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. J Mol Neurosci 9:75–92PubMedGoogle Scholar
  69. 69.
    Furio AM, Cutrera RA, Castillo TV, etal. (2002) Effect of melatonin on changes in locomotor activity rhythm of Syrian hamsters injected with beta amyloid peptide 25–35 in the suprachiasmatic nuclei. Cell Mol Neurobiol 22:699–709CrossRefPubMedGoogle Scholar
  70. 70.
    Matsubara E, Bryant-Thomas T, Pacheco QJ, etal. (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85:1101–1108CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Daniel P. Cardinali
    • 1
  • Analía M. Furio
    • 1
  • María P. Reyes
    • 1
  • Luis I. Brusco
    • 1
  1. 1.Department of Physiology, Faculty of MedicineUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations