Journal of Business Ethics

, Volume 144, Issue 4, pp 699–715 | Cite as

Toward an Understanding of Dynamic Moral Decision Making: Model-Free and Model-Based Learning

  • George I. ChristopoulosEmail author
  • Xiao-Xiao LiuEmail author
  • Ying-yi HongEmail author


In business settings, decision makers facing moral issues often experience the challenges of continuous changes. This dynamic process has been less examined in previous literature on moral decision making. We borrow theories on learning strategies and computational models from decision neuroscience to explain the updating and learning mechanisms underlying moral decision processes. Specifically, we present two main learning strategies: model-free learning, wherein the values of choices are updated in a trial-and-error fashion sustaining the formation of habits and model-based learning, wherein the brain updates more general cognitive maps and associations, thus sustaining flexible and state-dependent behaviors. We then summarize studies explaining the neuro-computational processes of both learning strategies—the calculation of prediction errors and valuation. We conclude by emphasizing how the incorporation of dynamic aspects in moral decision making could open new avenues for understanding moral behaviors in a changing world.


Corruption Bribery Decision making Decision neuroscience Learning Model-based 



Decision neuroscience


Reward prediction error


State prediction error


Ventro-medial prefrontac cortex


Somatic marker hypothesis


Dorso lateral prefrontal cortex



The authors would like to thank the Editors as well as two anonymous reviewers for their constructive comments in an earlier version of this paper. The preparation of this article was partially supported by the Academic Research Fund (AcRF) Tier 2 (MOE2012-T2-1-051) of the Ministry of Education, Singapore, awarded to Ying-yi Hong and George Christopoulos and by the Academic Research Fund (AcRF) Tier 1 (RG 1/11 M4010946.010) of the Ministry of Education, Singapore, awarded to the first author.


  1. Abbink, K., Irlenbusch, B., & Renner, E. (2002). An experimental bribery game. Journal of Law Economics and Organization, 18(2), 428–454.CrossRefGoogle Scholar
  2. Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O’Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32(3), 537–551.CrossRefGoogle Scholar
  3. Aimone, J. A., Houser, D., & Weber, B. (2014). Neural signatures of betrayal aversion: An fMRI study of trust. Proceedings of the Royal Society B: Biological Sciences, 281(1782), 20132127.CrossRefGoogle Scholar
  4. Alessi, S., & Petry, N. (2003). Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behavioural Processes, 64(3), 345–354.CrossRefGoogle Scholar
  5. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2(11), 1032–1037.CrossRefGoogle Scholar
  6. Ariely, D., Bracha, A., & Meier, S. (2009). Doing good or doing well? Image motivation and monetary incentives in behaving prosocially. American Economic Review, 99(1), 544–555.CrossRefGoogle Scholar
  7. Baker, F., Johnson, M. W., & Bickel, W. K. (2003). Delay discounting in current and never-before cigarette smokers: Similarities and differences across commodity, sign, and magnitude. Journal of Abnormal Psychology, 112(3), 382.CrossRefGoogle Scholar
  8. Ballard, K., Knutson, B. (2009). Dissociable neural representations of future reward magnitude and delay during temporal discounting. NeuroImage, 45, 143–150.CrossRefGoogle Scholar
  9. Bayer, J., Bandurski, P., & Sommer, T. (2013). Differential modulation of activity related to the anticipation of monetary gains and losses across the menstrual cycle. European Journal of Neuroscience, 38(10), 3519–3526.CrossRefGoogle Scholar
  10. Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129–141.CrossRefGoogle Scholar
  11. Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 1675–1689.CrossRefGoogle Scholar
  12. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (2005). The Iowa Gambling Task and the somatic marker hypothesis: Some questions and answers. Trends in cognitive sciences, 9(4), 159–162. discussion 162–154.CrossRefGoogle Scholar
  13. Behrens, T. E., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. (2008). Associative learning of social value. Nature, 456(7219), 245–249.CrossRefGoogle Scholar
  14. Beierholm, U. R., Anen, C., Quartz, S., & Bossaerts, P. (2011). Separate encoding of model-based and model-free valuations in the human brain. Neuroimage, 58(3), 955–962.CrossRefGoogle Scholar
  15. Bickel, W. K., Odum, A. L., & Madden, G. J. (1999). Impulsivity and cigarette smoking: Delay discounting in current, never, and ex-smokers. Psychopharmacology (Berl), 146(4), 447–454.CrossRefGoogle Scholar
  16. Bickel, W. K., Pitcock, J. A., Yi, R., & Angtuaco, E. J. (2009). Congruence of BOLD response across intertemporal choice conditions: Fictive and real money gains and losses. Journal of Neuroscience, 29(27), 8839–8846.CrossRefGoogle Scholar
  17. Bossaerts, P. (2009). What decision neuroscience teaches us about financial decision making. Annual Review of Financial Economics, 1, 383–404.CrossRefGoogle Scholar
  18. Burke, C. J., & Tobler, P. N. (2011). Reward skewness coding in the insula independent of probability and loss. Journal of Neurophysiology, 106(5), 2415–2422.CrossRefGoogle Scholar
  19. Burke, C. J., Tobler, P. N., Baddeley, M., & Schultz, W. (2010). Neural mechanisms of observational learning. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14431–14436.CrossRefGoogle Scholar
  20. Camerer, C. F. (2008). Neuroeconomics: Opening the gray box. Neuron, 60(3), 416–419.CrossRefGoogle Scholar
  21. Carver, C. S., & Scheier, M. F. (1982). Control-theory: A useful conceptual-framework for personality-social, clinical, and health psychology. Psychological Bulletin, 92(1), 111–135.CrossRefGoogle Scholar
  22. Christopoulos, G., & Hong, Y. Y. (2013). Turning two uninvited guests into prominent speakers: Toward a dynamic culture neuroscience. Psychological Inquiry, 24(1), 20–25.CrossRefGoogle Scholar
  23. Christopoulos, G. I., & King-Casas, B. (2015). With you or against you: Social orientation dependent learning signals guide actions made for others. Neuroimage, 104, 326–335.CrossRefGoogle Scholar
  24. Christopoulos, G., Kokkinaki, F., Harvey, N., & Sevdalis, N. (2011). Paying for no reason? (Mis-) perceptions of product attributes in separate vs. joint product evaluation. Journal of Economic Psychology, 32(5), 857–864.CrossRefGoogle Scholar
  25. Christopoulos, G. I., Tobler, P. N., Bossaerts, P., Dolan, R. J., & Schultz, W. (2009). Neural correlates of value, risk, and risk aversion contributing to decision making under risk. The Journal of neuroscience: The Official Journal of the Society for Neuroscience, 29(40), 12574–12583.CrossRefGoogle Scholar
  26. Chung, D., Christopoulos, G. I., King-Casas, B., Ball, S. B., & Chiu, P. H. (2015). Social signals of safety and risk confer utility and have asymmetric effects on observers’ choices. Nature Neuroscience, 18(6), 912–916.CrossRefGoogle Scholar
  27. Cohen, J. D., & Aston-Jones, G. (2005). Cognitive neuroscience: Decision amid uncertainty. Nature, 436(7050), 471–472.CrossRefGoogle Scholar
  28. Cole, M., & Packer, M. (2015). A bio-cultural-historical approach to the study of development. In M. J. Gelfand, C. Y. Chiu, & Y. Y. Hong (Eds.), Advances in culture and psychology (Vol. 6). New York: Oxford University Press.Google Scholar
  29. Cushman, F., Young, L., & Hauser, M. (2006). The role of conscious reasoning and intuition in moral judgment: Testing three principles of harm. Psychological Science, 17(12), 1082–1089.CrossRefGoogle Scholar
  30. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 351(1346), 1413–1420.CrossRefGoogle Scholar
  31. Daw, N. D. (2012). Model-based reinforcement learning as cognitive search: Neurocomputational theories. In P. M. Todd & T. R. Robbins (Eds.), Cognitive search: Evolution, algorithms and the brain. Cambridge: MIT Press.Google Scholar
  32. Daw, N. D., & Doya, K. (2006). The computational neurobiology of learning and reward. Current Opinion in Neurobiology, 16(2), 199–204.CrossRefGoogle Scholar
  33. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69(6), 1204–1215.CrossRefGoogle Scholar
  34. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.CrossRefGoogle Scholar
  35. Dayan, P., & Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain. Cognitive, Affective, & Behavioral Neuroscience, 8(4), 429–453.CrossRefGoogle Scholar
  36. Dayan, P., Niv, Y., Seymour, B., & Daw, N. D. (2006). The misbehavior of value and the discipline of the will. Neural Networks, 19(8), 1153–1160.CrossRefGoogle Scholar
  37. de Araujo, I. E., Kringelbach, M. L., Rolls, E. T., & McGlone, F. (2003). Human cortical responses to water in the mouth, and the effects of thirst. Journal of Neurophysiology, 90(3), 1865–1876.CrossRefGoogle Scholar
  38. de Araujo, I. E., Rolls, E. T., Velazco, M. I., Margot, C., & Cayeux, I. (2005). Cognitive modulation of olfactory processing. Neuron, 46(4), 671–679.CrossRefGoogle Scholar
  39. de Wit, H., Enggasser, J. L., & Richards, J. B. (2002). Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology, 27(5), 813–825.CrossRefGoogle Scholar
  40. Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. Neuroimage, 23(2), 744–751.CrossRefGoogle Scholar
  41. Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005a). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), 1611–1618.CrossRefGoogle Scholar
  42. Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005b). An fMRI study of reward-related probability learning. Neuroimage, 24(3), 862–873.CrossRefGoogle Scholar
  43. Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H. J., Grace, A. A., et al. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 1595–1600.CrossRefGoogle Scholar
  44. Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4–6), 495–506.CrossRefGoogle Scholar
  45. Doya, K., Samejima, K., Katagiri, K., & Kawato, M. (2002). Multiple model-based reinforcement learning. Neural Computation, 14(6), 1347–1369.CrossRefGoogle Scholar
  46. Dreher, J. C., & Burnod, Y. (2002). An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex. Neural Networks, 15(4–6), 583–602.CrossRefGoogle Scholar
  47. Du, W., Green, L., & Myerson, J. (2002). Cross-cultural comparisons of discounting delayed and probabilistic rewards. Psychological Record, 52(4), 479–492.CrossRefGoogle Scholar
  48. Fehr, E., Fischbacher, U., & Kosfeld, M. (2005). Neuroeconomic foundations of trust and social preferences: Initial evidence. American Economic Review, 95(2), 346–351.CrossRefGoogle Scholar
  49. Fermin, A., Yoshida, T., Ito, M., Yoshimoto, J., & Doya, K. (2010). Evidence for model-based action planning in a sequential finger movement task. Journal of Motor Behavior, 42(6), 371–379.CrossRefGoogle Scholar
  50. Fisher, H., Aron, A., & Brown, L. L. (2005). Romantic love: An fMRI study of a neural mechanism for mate choice. Journal of Comparative Neurology, 493(1), 58–62.CrossRefGoogle Scholar
  51. Fliessbach, K., Weber, B., Trautner, P., Dohmen, T., Sunde, U., Elger, C. E., & Falk, A. (2007). Social comparison affects reward-related brain activity in the human ventral striatum. Science, 318(5854), 1305–1308.CrossRefGoogle Scholar
  52. Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351–401.CrossRefGoogle Scholar
  53. Fuster, A., & Meier, S. (2010). Another hidden cost of incentives: The detrimental effect on norm enforcement. Management Science, 56(1), 57–70.CrossRefGoogle Scholar
  54. Garrett, T. A., & Sobel, R. S. (1999). Gamblers favor skewness, not risk: Further evidence from United States’ lottery games. Economics Letters, 63(1), 85–90.CrossRefGoogle Scholar
  55. Gillan, C. M., Otto, A. R., Phelps, E. A., & Daw, N. D. (2015). Model-based learning protects against forming habits. Cognitive, Affective, & Behavioral Neuroscience, 15, 523.CrossRefGoogle Scholar
  56. Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., Robbins, T. W., & de Wit, S. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. American Journal of Psychiatry, 168(7), 718–726.CrossRefGoogle Scholar
  57. Glascher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66(4), 585–595.CrossRefGoogle Scholar
  58. Glimcher, P. W., Dorris, M. C., & Bayer, H. M. (2005). Physiological utility theory and the neuroeconomics of choice. Games and Economic Behavior, 52(2), 213–256.CrossRefGoogle Scholar
  59. Glimcher, P. W., & Fehr, E. (2013). Neuroeconomics: Decision making and the brain. London: Academic Press.Google Scholar
  60. Gneezy, U., Meier, S., & Rey-Biel, P. (2011). When and why incentives (Don’t) work to modify behavior. Journal of Economic Perspectives, 25(4), 191–209.CrossRefGoogle Scholar
  61. Gneezy, U., & Rustichini, A. (2000). A fine is a price. Journal of Legal Studies, 29(1), 1–17.CrossRefGoogle Scholar
  62. Gong, M., Baron, J., & Kunreuther, H. (2009). Group cooperation under uncertainty. Journal of Risk and Uncertainty, 39(3), 251–270.CrossRefGoogle Scholar
  63. Green, L., Fry, A. F., & Myerson, J. (1994). Discounting of delayed rewards: A life-span comparison. Psychological Science, 5(1), 33–36.CrossRefGoogle Scholar
  64. Greene, J. D. (2007). Why are VMPFC patients more utilitarian? A dual-process theory of moral judgment explains. Trends in Cognitive Sciences, 11(8), 322–323. author reply 323–324.CrossRefGoogle Scholar
  65. Greene, J. D. (2009). The cognitive neuroscience of moral judgment. The Cognitive Neurosciences, 4, 987–999.Google Scholar
  66. Greene, J. D., Cushman, F. A., Stewart, L. E., Lowenberg, K., Nystrom, L. E., & Cohen, J. D. (2009). Pushing moral buttons: The interaction between personal force and intention in moral judgment. Cognition, 111(3), 364–371.CrossRefGoogle Scholar
  67. Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108(4), 814–834.CrossRefGoogle Scholar
  68. Haidt, J. (2007). The new synthesis in moral psychology. Science, 316(5827), 998–1002.CrossRefGoogle Scholar
  69. Haruno, M., & Kawato, M. (2006). Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. Journal of Neurophysiology, 95(2), 948–959.CrossRefGoogle Scholar
  70. Harvey, A. H., Kirk, U., Denfield, G. H., & Montague, P. R. (2010). Monetary favors and their influence on neural responses and revealed preference. Journal of Neuroscience, 30(28), 9597–9602.CrossRefGoogle Scholar
  71. Heil, S. H., Johnson, M. W., Higgins, S. T., & Bickel, W. K. (2006). Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls. Addictive Behaviors, 31(7), 1290–1294.CrossRefGoogle Scholar
  72. Hollerman, J. R., Tremblay, L., & Schultz, W. (1998). Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology, 80(2), 947–963.Google Scholar
  73. Hong, Y. Y. (2008). Dynamic constructivist approach to culture. International Journal of Psychology, 43(3–4), 421–422.Google Scholar
  74. Huettel, S. A., Song, A. W., & McCarthy, G. (2005). Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(13), 3304–3311.CrossRefGoogle Scholar
  75. Ikeda, S., Kang, M.-I., & Ohtake, F. (2010). Hyperbolic discounting, the sign effect, and the body mass index. Journal of Health Economics, 29(2), 268–284.CrossRefGoogle Scholar
  76. Illes, J., & Bird, S. J. (2006). Neuroethics: A modern context for ethics in neuroscience. Trends in Neurosciences, 29(9), 511–517.CrossRefGoogle Scholar
  77. Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284–294.CrossRefGoogle Scholar
  78. Jiang, T., Soussignan, R., Schaal, B., & Royet, J. P. (2014). Reward for food odors: An fMRI study of liking and wanting as a function of metabolic state and BMI. Social Cognitive and Affective Neuroscience.Google Scholar
  79. Jones, T. M. (1991). Ethical decision-making by individuals in organizations: An issue-contingent model. Academy of Management Review, 16(2), 366–395.Google Scholar
  80. Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. Heuristics and biases: The psychology of intuitive judgment, 49 Google Scholar
  81. Kahneman, D., & Frederick, S. (2005). A model of heuristic judgment. In The Cambridge handbook of thinking and reasoning. Cambridge: Cambridge University Press, pp 267–293.Google Scholar
  82. Kahneman, D., & Tversky, A. (1979). Prospect theory: Analysis of decision under risk. Econometrica, 47(2), 263–291.CrossRefGoogle Scholar
  83. King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 78–83.CrossRefGoogle Scholar
  84. Knutson, B., Wimmer, G. E., Kuhnen, C. M., & Winkielman, P. (2008). Nucleus accumbens activation mediates the influence of reward cues on financial risk taking. NeuroReport, 19(5), 509–513.CrossRefGoogle Scholar
  85. Kringelbach, M. L., O’Doherty, J., Rolls, E. T., & Andrews, C. (2003). Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebral Cortex, 13(10), 1064–1071.CrossRefGoogle Scholar
  86. Krueger, F., McCabe, K., Moll, J., Kriegeskorte, N., Zahn, R., Strenziok, M., et al. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20084–20089.CrossRefGoogle Scholar
  87. Kuhnen, C. M., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47(5), 763–770.CrossRefGoogle Scholar
  88. Kunreuther, H., Silvasi, G., Bradlow, E. T., & Small, D. (2009). Bayesian analysis of deterministic and stochastic prisoner’s dilemma games. Judgment and Decision Making, 4(5), 363–384.Google Scholar
  89. Lacey, S., Hagtvedt, H., Patrick, V. M., Anderson, A., Stilla, R., Deshpande, G., et al. (2011). Art for reward’s sake: Visual art recruits the ventral striatum. Neuroimage, 55(1), 420–433.CrossRefGoogle Scholar
  90. Lauharatanahirun, N., Christopoulos, G. I., & King-Casas, B. (2012). Neural computations underlying social risk sensitivity. Frontiers in Human Neuroscience, 6, 213.CrossRefGoogle Scholar
  91. Lawrence, N. S., Hinton, E. C., Parkinson, J. A., & Lawrence, A. D. (2012). Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage, 63(1), 415–422.CrossRefGoogle Scholar
  92. Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81(3), 687–699.CrossRefGoogle Scholar
  93. Lieberman, M. D., Gaunt, R., Gilbert, D. T., & Trope, Y. (2002). Reflexion and reflection: A social cognitive neuroscience approach to attributional inference. Advances in Experimental Social Psychology, 34(34), 199–249.CrossRefGoogle Scholar
  94. Loewenstein, G. (1987). Anticipation and the valuation of delayed consumption. Economic Journal, 97(387), 666–684.CrossRefGoogle Scholar
  95. Loewenstein, G. F. (1988). Frames of mind in intertemporal choice. Management Science, 34(2), 200–214.CrossRefGoogle Scholar
  96. Loewenstein, G., & O’Donoghue, T. (2004). Animal spirits: Affective and deliberative processes in economic behavior. Available at SSRN 539843.Google Scholar
  97. McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38(2), 339–346.CrossRefGoogle Scholar
  98. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379–387.CrossRefGoogle Scholar
  99. McCoy, A. N., & Platt, M. L. (2005). Expectations and outcomes: Decision-making in the primate brain. Journal of Comparative Physiology A Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(3), 201–211.CrossRefGoogle Scholar
  100. Mischel, W., Grusec, J., & Masters, J. C. (1969). Effects of expected delay time on subjective value of rewards and punishments. Journal of Personality and Social Psychology, 11(4), 363–373.CrossRefGoogle Scholar
  101. Miyapuram, K. P., & Pammi, V. S. (2013). Understanding decision neuroscience: A multidisciplinary perspective and neural substrates. Progress in Brain Research, 202, 239–266.CrossRefGoogle Scholar
  102. Miyapuram, K. P., Tobler, P. N., Gregorios-Pippas, L., & Schultz, W. (2012). BOLD responses in reward regions to hypothetical and imaginary monetary rewards. Neuroimage, 59(2), 1692–1699.CrossRefGoogle Scholar
  103. Moll, J., & de Oliveira-Souza, R. (2007). Response to Greene: Moral sentiments and reason: Friends or foes? Trends in Cognitive Sciences, 11(8), 323.CrossRefGoogle Scholar
  104. Moll, J., de Oliveira-Souza, R., Bramati, I. E., & Grafman, J. (2002a). Functional networks in emotional moral and nonmoral social judgments. Neuroimage, 16(3 Pt 1), 696–703.CrossRefGoogle Scholar
  105. Moll, J., de Oliveira-Souza, R., Eslinger, P. J., Bramati, I. E., Mourao-Miranda, J., Andreiuolo, P. A., & Pessoa, L. (2002b). The neural correlates of moral sensitivity: A functional magnetic resonance imaging investigation of basic and moral emotions. Journal of Neuroscience, 22(7), 2730–2736.Google Scholar
  106. Moll, J., Eslinger, P. J., & Oliveira-Souza, R. (2001). Frontopolar and anterior temporal cortex activation in a moral judgment task: Preliminary functional MRI results in normal subjects. Arq Neuropsiquiatr, 59(3-B), 657–664.CrossRefGoogle Scholar
  107. Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72–80.CrossRefGoogle Scholar
  108. Montague, P. R., Harvey, A. H., & Kirk, U. (2014). Using fMRI to study valuation and choice.Google Scholar
  109. Montague, P. R., & King-Casas, B. (2007). Efficient statistics, common currencies and the problem of reward-harvesting. Trends in cognitive sciences, 11(12), 514–519.CrossRefGoogle Scholar
  110. Mulder, L. B., & Aquino, K. (2013). The role of moral identity in the aftermath of dishonesty. Organizational Behavior and Human Decision Processes, 121(2), 219–230.CrossRefGoogle Scholar
  111. Odum, A. L. (2011). Delay discounting: Trait variable? Behavioural Processes, 87(1), 1–9.CrossRefGoogle Scholar
  112. Odum, A. L., Madden, G. J., & Bickel, W. K. (2002). Discounting of delayed health gains and losses by current, never- and ex-smokers of cigarettes. Nicotine & Tobacco Research, 4(3), 295–303.CrossRefGoogle Scholar
  113. Osuch, E. A., Bluhm, R. L., Williamson, P. C., Theberge, J., Densmore, M., & Neufeld, R. W. (2009). Brain activation to favorite music in healthy controls and depressed patients. NeuroReport, 20(13), 1204–1208.CrossRefGoogle Scholar
  114. Paloyelis, Y., Asherson, P., Mehta, M. A., Faraone, S. V., & Kuntsi, J. (2010). DAT1 and COMT effects on delay discounting and trait impulsivity in male adolescents with attention deficit/hyperactivity disorder and healthy controls. Neuropsychopharmacology, 35(12), 2414–2426.CrossRefGoogle Scholar
  115. Pavlov, I. P. (2003). Conditioned reflexes. New York: Courier Corporation.Google Scholar
  116. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 1042–1045.CrossRefGoogle Scholar
  117. Plassmann, H., O’Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27(37), 9984–9988.CrossRefGoogle Scholar
  118. Platt, M. L., & Huettel, S. A. (2008). Risky business: The neuroeconomics of decision making under uncertainty. Nature Neuroscience, 11(4), 398–403.CrossRefGoogle Scholar
  119. Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience, 28(11), 2745–2752.CrossRefGoogle Scholar
  120. Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 9(7), 545–556.CrossRefGoogle Scholar
  121. Reynolds, S. J. (2006). A neurocognitive model of the ethical decision-making process: Implications for study and practice. Journal of Applied Psychology, 91(4), 737–748.CrossRefGoogle Scholar
  122. Rilling, J., Gutman, D., Zeh, T., Pagnoni, G., Berns, G., & Kilts, C. (2002). A neural basis for social cooperation. Neuron, 35(2), 395–405.CrossRefGoogle Scholar
  123. Robertson, D., Snarey, J., Ousley, O., Harenski, K., DuBois Bowman, F., Gilkey, R., & Kilts, C. (2007). The neural processing of moral sensitivity to issues of justice and care. Neuropsychologia, 45(4), 755–766.CrossRefGoogle Scholar
  124. Roberts, A. C., Christopoulos, G. I., Car, J., Soh, C. K., & Lu, M. (2016). Psycho-biological factors associated with underground spaces: What can the new era of cognitive neuroscience offer to their study? Tunnelling and Underground Space Technology.Google Scholar
  125. Rothschild, M., & Stiglitz, J. E. (1970). Increasing Risk. 1. Definition. Journal of Economic Theory, 2(3), 225–243.CrossRefGoogle Scholar
  126. Sanfey, A. G. (2007). Social decision-making: Insights from game theory and neuroscience. Science, 318(5850), 598–602.CrossRefGoogle Scholar
  127. Schonberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 27(47), 12860–12867.CrossRefGoogle Scholar
  128. Schultz, W. (2008). Introduction. Neuroeconomics: The promise and the profit. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 363(1511), 3767–3769.CrossRefGoogle Scholar
  129. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.CrossRefGoogle Scholar
  130. Schultz, W., Preuschoff, K., Camerer, C., Hsu, M., Fiorillo, C. D., Tobler, P. N., & Bossaerts, P. (2008). Explicit neural signals reflecting reward uncertainty. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 363(1511), 3801–3811.CrossRefGoogle Scholar
  131. Schultz, W., Tremblay, L., & Hollerman, J. R. (1998). Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology, 37(4–5), 421–429.CrossRefGoogle Scholar
  132. Schultz, W., Tremblay, L., & Hollerman, J. R. (2003). Changes in behavior-related neuronal activity in the striatum during learning. Trends in Neurosciences, 26(6), 321–328.CrossRefGoogle Scholar
  133. Small, D. M., Gregory, M. D., Mak, Y. E., Gitelman, D., Mesulam, M. M., & Parrish, T. (2003). Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron, 39(4), 701–711.CrossRefGoogle Scholar
  134. Smith, D. V., & Huettel, S. A. (2010). Decision neuroscience: Neuroeconomics. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 854–871.Google Scholar
  135. Spinella, M., Lester, D., & Yang, B. (2004). Gambling and delaying rewards as a function of frontal system dysfunction: A study in neuroeconomics. Perceptual and Motor Skills, 99(3 Pt 1), 993–994.CrossRefGoogle Scholar
  136. Steinberg, L., Graham, S., O’Brien, L., Woolard, J., Cauffman, E., & Banich, M. (2009). Age differences in future orientation and delay discounting. Child Development, 80(1), 28–44.CrossRefGoogle Scholar
  137. Sutton, R., & Barto, A. (1988). Reinforcement learning: An introduction. Cambridge: MIT Press.Google Scholar
  138. Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., Ichinohe, N., Haruno, M., et al. (2012). Learning to simulate others’ decisions. Neuron, 74(6), 1125–1137.CrossRefGoogle Scholar
  139. Symmonds, M., Wright, N. D., Bach, D. R., & Dolan, R. J. (2011). Deconstructing risk: Separable encoding of variance and skewness in the brain. Neuroimage, 58(4), 1139–1149.CrossRefGoogle Scholar
  140. Tanaka, S. C., Yamada, K., Yoneda, H., & Ohtake, F. (2014). Neural mechanisms of gain-loss asymmetry in temporal discounting. Journal of Neuroscience, 34(16), 5595–5602.CrossRefGoogle Scholar
  141. Thaler, R. (1981a). Some empirical-evidence on dynamic inconsistency. Economics Letters, 8(3), 201–207.CrossRefGoogle Scholar
  142. Thaler, R. H. (1981b). Maximization and self-control. Behavioral and Brain Sciences, 4(3), 403–404.CrossRefGoogle Scholar
  143. Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: Macmillan.CrossRefGoogle Scholar
  144. Tobler, P. N., Christopoulos, G. I., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2008a). Neuronal distortions of reward probability without choice. Journal of Neuroscience, 28(45), 11703–11711.CrossRefGoogle Scholar
  145. Tobler, P. N., Kalis, A., & Kalenscher, T. (2008b). The role of moral utility in decision making: An interdisciplinary framework. Cognitive, Affective, & Behavioral Neuroscience, 8(4), 390–401.CrossRefGoogle Scholar
  146. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208.CrossRefGoogle Scholar
  147. Venkatraman, V. (2013). Why bother with the brain? A role for decision neuroscience in understanding strategic variability. Progress in Brain Research, 202, 267–288.CrossRefGoogle Scholar
  148. Voon, V., Derbyshire, K., Ruck, C., Irvine, M. A., Worbe, Y., Enander, J., et al. (2015). Disorders of compulsivity: A common bias towards learning habits. Molecular Psychiatry, 20(3), 345–352.CrossRefGoogle Scholar
  149. Winstanley, C. A., Dalley, J. W., Theobald, D. E., & Robbins, T. W. (2003). Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology (Berl), 170(3), 320–331.CrossRefGoogle Scholar
  150. Wunderlich, K., Dayan, P., & Dolan, R. J. (2012a). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15(5), 786–791.CrossRefGoogle Scholar
  151. Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012b). Dopamine enhances model-based over model-free choice behavior. Neuron, 75(3), 418–424.CrossRefGoogle Scholar
  152. Yates, J. F., & Watts, R. A. (1975). Preferences for deferred losses. Organizational Behavior and Human Performance, 13(2), 294–306.CrossRefGoogle Scholar
  153. Young, L., & Koenigs, M. (2007). Investigating emotion in moral cognition: A review of evidence from functional neuroimaging and neuropsychology. British Medical Bulletin, 84, 69–79.CrossRefGoogle Scholar
  154. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509–517.CrossRefGoogle Scholar
  155. Zink, C. F., Tong, Y., Chen, Q., Bassett, D. S., Stein, J. L., & Meyer-Lindenberg, A. (2008). Know your place: Neural processing of social hierarchy in humans. Neuron, 58(2), 273–283.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Nanyang Business SchoolNanyang Technological UniversitySingaporeSingapore
  2. 2.Culture Science InstituteNanyang Technological UniversitySingaporeSingapore
  3. 3.The Chinese University of Hong KongHong-KongChina
  4. 4.Department of Business Management, School of ManagementXiamen UniversityXiamenChina

Personalised recommendations