Journal of Business Ethics

, Volume 137, Issue 2, pp 383–403 | Cite as

It's All in the Game: A 3D Learning Model for Business Ethics

  • Suzy Jagger
  • Haytham Siala
  • Diane Sloan


How can we improve business ethics education for the twenty first century? This study evaluates the effectiveness of a visual case exercise in the form of a 3D immersive game given to undergraduate students at two UK Universities as part of a mandatory business ethics module. We propose that due to evolving learning styles, the immersive nature of interactive games lends itself as a vehicle to make the learning of ethics more ‘concrete’ and ‘personal’ and therefore more engaging. To achieve this, we designed and built an immersive 3D simulation game in the style of a visual case. The effectiveness of the game was evaluated using a mixed methods approach measuring recognised and adapted constructs from the technology acceptance model. Results demonstrate that students found the game beneficial to their learning of ethics with the development of knowledge and skills applicable to the real world and that they engaged with the process due to game elements. Findings demonstrate the potential for the development of simulated games to teach ethics at all levels and modes of delivery and the contribution of this type of visual case model as a pedagogic method.


Teaching business ethics Business simulation game, serious games Interactive learning Experiential learning Business ethics education Mixed methods 


  1. Afari, E., Aldridge, J., Fraser, B., & Khine, M. (2013). Students perceptions of the learning environment and attitudes in game-based mathematics classrooms. Learning Environments Research, 16(1), 131–150. doi: 10.1007/s10984-012-9122-6.CrossRefGoogle Scholar
  2. Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665–694. doi: 10.2307/3250951.CrossRefGoogle Scholar
  3. Ajzen, I. (1988). Attitudes, personality and behavior. Milton Keynes: Open University Press.Google Scholar
  4. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.CrossRefGoogle Scholar
  5. Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32, 665–683.CrossRefGoogle Scholar
  6. Anastasi, A. (1988). Psychological testing (6th ed.). New York: Macmillan.Google Scholar
  7. Anderson, P. H., & Lawton, L. (2009). Business simulations and cognitive learning: developments, desires, and future directions. Simulation & Gaming, 40(2), 193–216. doi: 10.1177/1046878108321624.CrossRefGoogle Scholar
  8. Annetta, L. A., Cheng, M.-T., & Holmes, S. (2010). Assessing twenty-first century skills through a teacher created video game for high school biology students. Research in Science & Technological Education, 28(2), 101–114.CrossRefGoogle Scholar
  9. Arbaugh, J. B. (2002). Managing the on-line classroom: A study of technological and behavioral characteristics of web-based MBA courses. The Journal of High Technology Management Research, 13(2), 203–223. doi: 10.1016/S1047-8310(02)00049-4.CrossRefGoogle Scholar
  10. Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66(3), 411–421.Google Scholar
  11. Bajaj, A., & Nidumolu, S. (1998). A feedback model to understand information system usage. Information & Management, 33(4), 213–224.CrossRefGoogle Scholar
  12. Beck, L., & Ajzen, I. (1991). Predicting dishonest actions using the theory of planned behavior. Journal of Research in Personality, 25(3), 285–301. doi: 10.1016/0092-6566(91)90021-H.CrossRefGoogle Scholar
  13. Benowitz, M. L., & Busse, T. V. (1970). Material incentives and the learning of spelling words in a typical school situation. Journal of Educational Psychology, 61(1), 24–26. doi: 10.1037/h0028822.CrossRefGoogle Scholar
  14. Benowitz, M. L., & Busse, T. V. (1976). Effects of material incentives on classroom learning over a four-week period. Journal of Educational Psychology, 68(1), 57–62. doi: 10.1037/0022-0663.68.1.57.CrossRefGoogle Scholar
  15. Berlyne, D. E. (1965). Structure and direction in thinking. New York: Wiley.Google Scholar
  16. Bisett, B. M., & Rieber, M. (1966). The effects of age and incentive value on discrimination learning. Journal of Experimental Child Psychology, 3(2), 199–206. doi: 10.1016/0022-0965(66)90094-4.CrossRefGoogle Scholar
  17. Bruner, J. S. (1965). Toward a theory of instruction. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  18. Buck, W. (2014). Theory of business ethics simulation games. Journal of Business Ethics Education, 11.Google Scholar
  19. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81–105.CrossRefGoogle Scholar
  20. Carrington, M., Neville, B., & Whitwell, G. (2010). Why ethical consumers don’t walk their talk: Towards a framework for understanding the gap between the ethical purchase intentions and actual buying behaviour of ethically minded consumers. Journal of Business Ethics, 97(1), 139–158. doi: 10.1007/s10551-010-0501-6.CrossRefGoogle Scholar
  21. Cartwright, C. A. (1970). Efficacy of preferential incentives with elementary school children. Journal of Educational Psychology, 61(2), 152–158. doi: 10.1037/h0028904.CrossRefGoogle Scholar
  22. Churchill, G. A. J. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1), 64–73.CrossRefGoogle Scholar
  23. Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  24. Cooley, D. R. (2004). The moral paradigm test. Journal of Business Ethics, 50(3), 289–294. doi: 10.1023/B:BUSI.0000024661.94386.47.CrossRefGoogle Scholar
  25. Crossan, M., Mazutis, D., & Seijts, G. (2013). In search of virtue: The role of virtues, values and character strengths in ethical decision making. Journal of Business Ethics, 113(4), 567–581. doi: 10.1007/s10551-013-1680-8.CrossRefGoogle Scholar
  26. Csikszentmihalyi, M. (1979). Intrinsic rewards and emergent motivation. In M. R. Lepper & D. Greene (Eds.), The hidden costs of reward. Morristown, NJ: Lawrence Erlbaum Associates.Google Scholar
  27. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. doi: 10.2307/249008.CrossRefGoogle Scholar
  28. Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475–487. doi: 10.1006/imms.1993.1022.CrossRefGoogle Scholar
  29. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology—A comparison of 2 theoretical models. Management Science, 35(8), 982–1003.CrossRefGoogle Scholar
  30. Dede, C. (2005). Planning for neomillennial learning styles. EDUCAUSE Quarterly, 28(1), 7–12.Google Scholar
  31. Edmunds, R., Thorpe, M., & Conole, G. (2012). Student attitudes towards and use of ICT in course study, work and social activity: A technology acceptance model approach. British Journal of Educational Technology, 43(1), 71–84. doi: 10.1111/j.1467-8535.2010.01142.x.CrossRefGoogle Scholar
  32. Facteau, J. D., Dobbins, G. H., Russell, J. E., Ladd, R. T., & Kudisch, J. D. (1995). The influence of general perceptions of the training environment on pretraining motivation and perceived training transfer. Journal of Management, 21(1), 1–25.CrossRefGoogle Scholar
  33. Falkenberg, L., & Woiceshyn, J. (2008). Enhancing business ethics: Using cases to teach moral reasoning. Journal of Business Ethics, 79(3), 213–217. doi: 10.1007/s10551-007-9381-9.CrossRefGoogle Scholar
  34. Felton, E. L., & Sims, R. R. (2005). Teaching business ethics: Targeted outputs. Journal of Business Ethics, 60, 377–391.CrossRefGoogle Scholar
  35. Figlio, D. N., & Kenny, L. W. (2007). Individual teacher incentives and student performance. Journal of Public Economics, 91(5–6), 901–914. doi: 10.1016/j.jpubeco.2006.10.001.CrossRefGoogle Scholar
  36. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. London: Addison-Wesley.Google Scholar
  37. Gee, J. P. (2003). What video games have to teach us about learning and literacy. New York: Palgrave Macmillan.Google Scholar
  38. George, D., & Mallery, P. (2010). SPSS for Windows step by step: A simple guide and reference, 17.0 update (10th ed.). Boston: Allyn & Bacon.Google Scholar
  39. Gibson, A., & Frakes, A. (1997). Truth or consequences: A study of critical issues and decision making in accounting. Journal of Business Ethics, 16(2), 161–171. doi: 10.1023/A:1017914713375.CrossRefGoogle Scholar
  40. Gioia, D. A., & Brass, D. J. (1986). Teaching the TV generation: The case for observational learning. Organizational Behavior Teaching Review, 10, 11–18.Google Scholar
  41. Gu, J., & Neesham, C. (2014). Moral identity as leverage point in teaching business ethics. Journal of Business Ethics,. doi: 10.1007/s10551-013-2028-0.Google Scholar
  42. Guadagnoli, E., & Velicer, W. F. (1988). Relation to sample size to the stability of component patterns. Psychological Bulletin, 103(2), 265.CrossRefGoogle Scholar
  43. Hair, J. F. (2006). Multivariate data analysis (6th ed.). Upper Saddle River, NJ: Pearson-Prentice Hall.Google Scholar
  44. Hardy, M. A. (1993). Regression with dummy variables Quantitative applications in the social sciences 07-093 (pp. 1 online resource (vi, 90 p.)). Retrieved from
  45. Hassan, L., Shiu, E., & Shaw, D. (2014). Who says there is an intention–behaviour gap? Assessing the empirical evidence of an intention–behaviour gap in ethical consumption. Journal of Business Ethics,. doi: 10.1007/s10551-014-2440-0.Google Scholar
  46. Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853–868. doi: 10.1016/ Scholar
  47. Huang, J.-H., Lin, Y.-R., & Chuang, S.-T. (2007). Elucidating user behavior of mobile learning: A perspective of the extended technology acceptance model. The Electronic Library, 25(5), 585–598.CrossRefGoogle Scholar
  48. Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14–26. doi: 10.3102/0013189x033007014.CrossRefGoogle Scholar
  49. Jondle, D., Ardichvili, A., & Mitchell, J. (2014). Modeling ethical business culture: Development of the ethical business culture survey and its use to validate the CEBC model of ethical business culture. Journal of Business Ethics, 119(1), 29–43. doi: 10.1007/s10551-012-1601-2.CrossRefGoogle Scholar
  50. Kachigan, S. K. (1991). Multivariate statistical analysis: A conceptual introduction (2nd ed.). New York: Radius Press.Google Scholar
  51. Kennedy, W. A., & Willcutt, H. C. (1964). Praise and blame as incentives. Psychological Bulletin, 62(5), 323–332. doi: 10.1037/h0042917.CrossRefGoogle Scholar
  52. Kidwell, L. (2001). Student honor codes as a tool for teaching professional ethics. Journal of Business Ethics, 29(1–2), 45–49. doi: 10.1023/A:1006442925586.CrossRefGoogle Scholar
  53. Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued IS use: An integrative view of four mechanisms underlying postadoption phenomena. Management Science, 51(5), 741–755. doi: 10.1287/mnsc.1040.0326.CrossRefGoogle Scholar
  54. Klopfer, E., Osterweil, S., & Salen, K. (2009). Moving learning games forward: Obstacles, opportunities and openness. Cambridge, MA: The Education Arcade, Massachusetts Institute of Technology, Creative Commons.Google Scholar
  55. Knowles, J. B. (1963). Acquiescence response set and the Questionnaire Measurement of Personality. British Journal of Social and Clinical Psychology, 2(2), 131–137. doi: 10.1111/j.2044-8260.1963.tb00385.x.CrossRefGoogle Scholar
  56. Kolb, A. Y., Kolb, D. A., Passarelli, A., & Sharma, G. (2014). On becoming an experiential educator: The educator role profile. Simulation & Gaming, 45(2), 204–234. doi: 10.1177/1046878114534383.CrossRefGoogle Scholar
  57. Koufaris, M. (2002). Applying the technology acceptance model and flow theory to on-line consumer behavior. Information System Research Information System Research, 13(2), 205–223.CrossRefGoogle Scholar
  58. Kuss, D. J., Griffiths, M. D., & Binder, J. F. (2013). Internet addiction in students: Prevalence and risk factors. Computers in Human Behaviour, 29, 959–966.CrossRefGoogle Scholar
  59. Laditka, S., & Houck, M. (2006). Student-developed case studies: An experiential approach for teaching ethics in management. Journal of Business Ethics, 64(2), 157–167. doi: 10.1007/s10551-005-0276-3.CrossRefGoogle Scholar
  60. Landry, B. J. L., Griffeth, R., & Hartman, S. (2006). Measuring student perceptions of blackboard using the technology acceptance model. Decision Sciences Journal of Innovative Education, 4(1), 87–99. doi: 10.1111/j.1540-4609.2006.00103.x.CrossRefGoogle Scholar
  61. Lawrence, K. E., & Reed, K. L. (2011). Experiencing and measuring the unteachable: Achieving AACSB learning assurance requirements in business ethics. Journal of Education for Business, 86, 92–99.CrossRefGoogle Scholar
  62. Lepper, M. R. (1988). Motivational considerations in the study of instruction. Cognition and Instruction, 5(4), 289–309.CrossRefGoogle Scholar
  63. Liao, C., Lin, H., & Liu, Y. (2010). Predicting the use of pirated software: A contingency model integrating perceived risk with the theory of planned behavior. Journal of Business Ethics, 91(2), 237–252. doi: 10.1007/s10551-009-0081-5.CrossRefGoogle Scholar
  64. Lin, J., & Lu, H. (2000). Toward an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20, 197–208.CrossRefGoogle Scholar
  65. Litwin, M. S., & Fink, A. (1995). How to measure survey reliability and validity. London: Sage.CrossRefGoogle Scholar
  66. Lloyd, P., & Van De Poel, I. (2008). Designing games to teach ethics. Science and Engineering Ethics, 14(3), 433–447.CrossRefGoogle Scholar
  67. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84.CrossRefGoogle Scholar
  68. Macchiarella, P. (2012). Trends in digital gaming: Free-to-play, social, and mobile games. Author: Dallas, TX.Google Scholar
  69. Malhotra, N. K. (2010). Marketing research: An applied orientation (6th ed.). London: Prentice Hall.CrossRefGoogle Scholar
  70. Malhotra, N. K., Kim, S. S., & Patil, A. (2006). Common method variance in IS research: A comparison of alternative approaches and a reanalysis of past research. Management Science, 52(12), 1865–1883. doi: 10.1287/mnsc.1060.0597.CrossRefGoogle Scholar
  71. Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 4, 333–369.CrossRefGoogle Scholar
  72. May, D., Luth, M., & Schwoerer, C. (2013). The influence of business ethics education on moral efficacy, moral meaningfulness, and moral courage: A quasi-experimental study. Journal of Business Ethics,. doi: 10.1007/s10551-013-1860-6.Google Scholar
  73. McWilliams, V., & Nahavandi, A. (2006). Using live cases to teach ethics. Journal of Business Ethics, 67(4), 421–433. doi: 10.1007/s10551-006-9035-3.CrossRefGoogle Scholar
  74. Moon, Y.-L. (1986). A review of cross-cultural studies on moral judgment development using the defining issues test. Cross-Cultural Research, 20(1–4), 147–177. doi: 10.1177/106939718602000107.CrossRefGoogle Scholar
  75. Moore, O. K., & Anderson, A. R. (1969). Some principles for the design of clarifying educational environments. In D. Goslin (Ed.), Handbook of socialization theory and research. New York: Rand McNally.Google Scholar
  76. Morgan, D. L. (1996). Focus groups. Annual Review of Sociology, 22, 129–152.CrossRefGoogle Scholar
  77. Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal-directed and experiential activities on online flow experiences. Journal of Consumer Psychology, 13(1–2), 3–16. doi: 10.1207/S15327663JCP13-1&2_01.CrossRefGoogle Scholar
  78. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.Google Scholar
  79. Nyberg, D. (2008). The morality of everyday activities: Not the right, but the good thing to do. Journal of Business Ethics, 81, 587–598.CrossRefGoogle Scholar
  80. Piaget, J. (1951). Play, dreams, and imitation in childhood. New York: Norton.Google Scholar
  81. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879.CrossRefGoogle Scholar
  82. Princeton University. (2007). Working with dummy variable. Retrieved 04/04/2014, from
  83. Proserpio, L., & Gioia, D. A. (2007). Teaching the virtual generation. Academy of Management Learning & Education, 6(1), 69–90.CrossRefGoogle Scholar
  84. Reynolds, J., & Santos, A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. Journal of Extension, 37(2), 34–36.Google Scholar
  85. Ricci, P., & Markulis, P. M. (1990). Can ethics be taught? A Simulation tests a traditional ethics pedagogy. Developments in Business Simulation & Experiential Learning, 17, 141–145.Google Scholar
  86. Roca, E. (2008). Introducing practical wisdom in business schools. Journal of Business Ethics, 82(3), 607–620. doi: 10.1007/s10551-007-9580-4.CrossRefGoogle Scholar
  87. Roca, J. C., Chiu, C., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683–696. doi: 10.1016/j.ijhcs.2006.01.003.CrossRefGoogle Scholar
  88. Sauve, L., Renaud, L., Kaufman, D., & Marquis, J. S. (2007). Distinguishing between games and simulation: A systematic review. Education Technology & Society, 10(3), 247–256.Google Scholar
  89. Sicart, M. (2009). The ethics of computer games. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  90. Steinkuehler, C., & Duncan, S. (2008). Scientific habits of mind in virtual worlds. Journal of Science Education and Technology, 17(6), 530–543. doi: 10.1007/s10956-008-9120-8.CrossRefGoogle Scholar
  91. Stern, L. (2010). A visual approach to SPSS for Windows: A guide to SPSS 17.0 (2nd ed.). Boston: Allyn & Bacon.Google Scholar
  92. Stevens, J. P. (1992). Applied multivariate statistics for the social sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  93. Stevens, J. M., Kevin Steensma, H., Harrison, D. A., & Cochran, P. L. (2005). Symbolic or substantive document? The influence of ethics codes on financial executives’ decisions. Strategic Management Journal, 26(2), 181–195. doi: 10.1002/smj.440.CrossRefGoogle Scholar
  94. Szajna, B. (1994). Software evaluation and choice: Predictive validation of the technology acceptance instrument. MIS Quarterly, 18(3), 319–324.CrossRefGoogle Scholar
  95. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). London: Pearson/Allyn & Bacon.Google Scholar
  96. The Ethics Game. (2014). Core values. Retrieved August 15, 2014, from
  97. Thorne LeClair, D., & Ferrell, L. (2000). Innovation in experiential business ethics training. Journal of Business Ethics, 23(3), 313–322. doi: 10.1023/A:1006266526120.CrossRefGoogle Scholar
  98. Van Liedekerke, L., & Demuijnck, G. (2011). Business Ethics as a field of training, teaching and research in Europe. Journal of Business Ethics, 104, 29–41.CrossRefGoogle Scholar
  99. Vos, L., & Brennan, R. (2010). Marketing simulation games: Student and lecturer perspectives. Marketing Intelligence & Planning, 28(7), 882–897. doi: 10.1108/02634501011086472.CrossRefGoogle Scholar
  100. Wallop, H., Gen Z, & Gen Y. (2014). Baby boomers—A guide to the generations. The Telegraph. Retrieved from
  101. Ware, J. E, Jr. (1978). Effects of acquiescent response set on patient satisfaction ratings. Medical Care, 16(4), 327–336. doi: 10.2307/3763452.CrossRefGoogle Scholar
  102. Weber, J., & Gillespie, J. (1998). Differences in ethical beliefs, intentions, and behaviors: The role of beliefs and intentions in ethics research revisited. Business and Society, 37(4), 447–467. doi: 10.1177/000765039803700406.CrossRefGoogle Scholar
  103. Webster, J., & Ho, H. (1997). Audience engagement in multimedia presentations. SIGMIS Database, 28(2), 63–77. doi: 10.1145/264701.264706.CrossRefGoogle Scholar
  104. Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human–computer interactions. Computers in Human Behavior, 9(4), 411–426. doi: 10.1016/0747-5632(93)90032-N.CrossRefGoogle Scholar
  105. Whitton, N. (2012). The place of game-based learning in an age of austerity. Electronic Journal of e-Learning, 10(2), 249–256.Google Scholar
  106. Witryol, S. L., & Hayne, W. R. (1971). Incentives and learning in children. In Advances in child development and behavior (Vol. 6, pp. 1–61). Greenwich, CT: JAI Press.Google Scholar
  107. Yi, M. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-Computer Studies, 59(4), 431–449. doi: 10.1016/S1071-5819(03)00114-9.CrossRefGoogle Scholar
  108. Yusoff, A., Crowder, R., & Gilbert, L. (2010). Validation of serious games attributes using the technology acceptance model. Paper presented at the proceedings of the 2010 second international conference on games and virtual worlds for serious applications.Google Scholar
  109. Zwick, W. R., & Velicer, W. F. (1982). Factors influencing four rules for determining the number of components to retain. Multivariate Behavioral Research, 17(2), 253–269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of RoehamptonLondonUK
  2. 2.University of NorthumbriaNewcastle upon TyneUK

Personalised recommendations