Advertisement

BT Technology Journal

, Volume 24, Issue 3, pp 108–115 | Cite as

Characterising and modelling the internet topology — The rich-club phenomenon and the PFP model

Article

Abstract

It is vital to obtain a good description of the Internet topology because structure fundamentally affects function. This paper reviews two recent achievements on characterising and modelling the Internet topology at the autonomous systems level, including a newly discovered structure, called the rich-club phenomenon, and one of the most successful Internet topology generators to date, the positive-feedback preference (PFP) model. The discovery of the rich-club phenomenon is significant because an appreciation of this hierarchy structure is essential for a proper examination of the global Internet properties, such as routing efficiency, network flexibility and robustness. The PFP model accurately reproduces the largest set of important topology characteristics of the Internet. The model can be used for more realistic simulation studies of the Internet. The model also provides novel insights into the underlying rules that govern the Internet evolution.

Keywords

Short Path Length Positive Feedback Preference Club Member Border Gateway Protocol Average Short Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Floyd S and Kohler E: ’Internet research needs better models’, ACM SIGCOMM Computer Communications Reviews, 33, No 1, pp 29–34 (January 2003).CrossRefGoogle Scholar
  2. 2.
    Riley G F and Ammar M H: ’Simulating large networks — how big is big enough?’ in Proc of 1st Intl Conf on Grand Challenges for Modeling and Simulation (2002).Google Scholar
  3. 3.
    Quoitin B, Pelsser C and Swinnen L: ’Interdomain traffic engineering with BGP’, IEEE Communications Magazine (May 2003).Google Scholar
  4. 4.
    Zhou S and Mondragón R J: ’The rich-club phenomenon in the Internet topology’, IEEE Comm Lett, 8, No 3, pp 180–182 (March 2004).CrossRefGoogle Scholar
  5. 5.
    Zhou S and Mondragón R J: ’Accurately modelling the Internet topology’, Physical Review E, 70, No 066108 (December 2004).Google Scholar
  6. 6.
    Internet Mapping Project, Lumeta — http://research.lumeta.com/ches/map/gallery/
  7. 7.
    Internet Routing Registries — http://www.irr.net/
  8. 8.
    Mahadevan P, Krioukov D, Fomenkov M, Huffaker B, Dimitropoulos X, Claffy K and Vahdat A: ’The Internet AS-level topology: Three data sources and one definitive metric’, arXiv:cs.NI/0512095 (2005).Google Scholar
  9. 9.
    Zhou S and Mondragón R J: ’Topological discrepancies among Internet measurements using different sampling methodologies’, Lecture Notes in Computer Science (LNCS), No 3391, Springer-Verlag, pp 207–217 (February 2005).Google Scholar
  10. 10.
    Faloutsos M, Faloutsos P and Faloutsos C: ’On power-law relationships of the Internet topology’, Comput Commun Rev, 29, pp 251–262 (1999).CrossRefGoogle Scholar
  11. 11.
    Erdös P and Rényi A: ’On the evolution of random graphs’, Publ Math Inst Hung Acad Sci, 5, pp 17 (1960).zbMATHGoogle Scholar
  12. 12.
    Barabási A L and Albert R: ’Emergence of scaling in random networks’, Science, 286, pp 509–512 (1999).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Albert R, Jeong H and Barabási A L: ’Error and attack tolerance of complex networks’, Nature, 406, pp 378–381 (2000).CrossRefGoogle Scholar
  14. 14.
    Watts J: ’Small Worlds: The Dynamics of Networks between Order and Randomness’, New Jersey, USA, Princeton University Press (1999).Google Scholar
  15. 15.
    Labovitz C, Ahuja A, Wattenhofer R and Venkatachary S: ’The impact of Internet policy and topology on delayed routing convergence’, in Proc of INFOCOMM2001, pp 537–546 (2001).Google Scholar
  16. 16.
    Bianconi G, Caldarelli G and Capocci A: ’Number of h-cycles in the Internet at the autonomous system level’, ArXiv:cond-mat/0310339 (2003).Google Scholar
  17. 17.
    Vázquez A, Pastor-Satorras R, Boguna M, Moreno Y and Vespignani A: ’Topology and correlations in structured scale-free networks’, Physical Review E, 67, No 046111 (2003).Google Scholar
  18. 18.
    Newman M E J: ’Mixing patterns in networks’, Phys Rev E, 67, No 026126 (2003).Google Scholar
  19. 19.
    Pastor-Satorras R and Vespignani A: ’Evolution and Structure of the Internet — A Statistical Physics Approach’, Cambridge University Press (2004).Google Scholar
  20. 20.
    Albert R and Barabási A L: ’Statistical mechanics of complex networks’, Rev Mod Phys, 74, pp 47–97 (2002).CrossRefGoogle Scholar
  21. 21.
    Medina A and Matta I: ’Brite: A flexible generator of Internet topologies’, Boston University, Tech Rep BU-CS-TR-2000-005 (2000).Google Scholar
  22. 22.
    Winick J and Jamin S: ’Inet-3.0 Internet topology generator’, University of Michigan, Tech Rep UM-CSE-TR-456-02 (2002).Google Scholar
  23. 23.
    Zegura E W, Calvert K L and Donahoo M J: ’A quantitative comparison of graph-based models for Internet topology’, ACM/ IEEE Transactions on Networking, 5, No 6, pp 770–783 (1997).CrossRefGoogle Scholar
  24. 24.
    Vázquez A, Pastor-Satorras R and Vespignani A: ’Large-scale topological and dynamical properties of Internet’, Phys Rev E, 65, No 066130 (2002).Google Scholar
  25. 25.
    Chen Q, Chang H, Govindan R, Jamin S, Shenker S J and Willinger W: ’The origin of power laws in Internet topologies (revisited)’, in Proc of INFOCOM 2002, pp 608–617 (2002).Google Scholar
  26. 26.
    Park S T, Khrabrov A, Pennock D M, Lawrence S, Giles C L and Ungar L H: ’Static and dynamic analysis of the Internet’s susceptibility to faults and attacks’, in Proc of IEEE INFOCOM 2003, 3, pp 2144–2154 (April 2003).Google Scholar
  27. 27.
    Data kit 0304 was collected as part of CAIDA’s Skitter initiative, http://www. caida.org (support for Skitter is provided by DARPA, NSF, and CAIDA membership).Google Scholar
  28. 28.
    The Chinese Internet AS graph, CN05 — http://www.adastral.ucl.ac.uk/∼szhou/resource.htm
  29. 29.
    ’Toward mathematically rigorous next-generation routing protocols for realistic network topologies’, National Science Foundation (USA) project No 0434996 (2004) — http://www.caida.org/funding/nets-nr/

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. Zhou

There are no affiliations available

Personalised recommendations