Skip to main content

Advertisement

Log in

Breast cancer immune microenvironment: from pre-clinical models to clinical therapies

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The breast cancer tumour microenvironment (BC-TME) is characterized by significant cellular and spatial heterogeneity that has important clinical implications and can affect response to therapy. There is a growing need to develop methods that reliably quantify and characterize the BC-TME and model its composition and functions in experimental systems, in the hope of developing new treatments for patients. In this review, we examine the role of immune-activating cells (including tumour-infiltrating lymphocytes and natural killer cells) and immune inhibitory cells (including T regulatory cells, tumour-associated macrophages and myeloid-derived suppressor cells) in the BC-TME. We summarize methods being used to characterize the microenvironment, with specific attention to pre-clinical models including co-cultures, organoids, and genetically modified and humanized mouse models. Finally, we explore the implications and applications of existing preclinical data for drug development and highlight several drugs designed to alter the BC-TME in order to improve treatment outcomes for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stanton SE, Adams S, Disis ML (2016) Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol 2:1354–1360

    PubMed  Google Scholar 

  2. Denkert C, Loibl S, Noske A et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28:105–113

    CAS  PubMed  Google Scholar 

  3. Vidula N, Yau C, Goga A, Rugo HS (2015) Programmed cell death 1 (PD-1) receptor and programmed death ligand 1 (PD-L1) expression in primary breast cancer (BC); correlations with clinical characteristics and patient outcomes. Am Soc Clin Oncol 20:1090

    Google Scholar 

  4. Muenst S, Schaerli A, Gao F et al (2014) Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 146:15–24

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Waks AG, Stover DG, Guerriero JL et al (2019) The immune microenvironment in hormone receptor-positive breast cancer before and after preoperative chemotherapy. Clin Cancer Res 25:4644–4655

    CAS  PubMed  Google Scholar 

  6. Schmid P, Adams S, Rugo HS et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121

    CAS  PubMed  Google Scholar 

  7. Cortes J, Cescon DW, Rugo HS et al (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. The Lancet 396:1817–1828

    Google Scholar 

  8. Gruosso T, Gigoux M, Manem VSK et al (2019) Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Investig 129:1785–1800

    PubMed  PubMed Central  Google Scholar 

  9. Tofigh A, Suderman M, Paquet ER et al (2014) The prognostic ease and difficulty of invasive breast carcinoma. Cell Rep 9:129–142

    CAS  PubMed  Google Scholar 

  10. Szekely B, Bossuyt V, Li X et al (2018) Immunological differences between primary and metastatic breast cancer. Ann Oncol 29:2232–2239

    CAS  PubMed  Google Scholar 

  11. Hutchinson KE, Yost SE, Chang C-W et al (2020) Comprehensive profiling of poor-risk paired primary and recurrent triple-negative breast cancers reveals immune phenotype shifts. Clin Cancer Res 26:657–668

    CAS  PubMed  Google Scholar 

  12. Lee H, Na KJ, Choi H (2021) Differences in tumor immune microenvironment in metastatic sites of breast cancer. Front Oncol 11:722

    Google Scholar 

  13. Cerwenka A, Lanier LL (2016) Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol 16:112

    CAS  PubMed  Google Scholar 

  14. López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L (2017) Control of metastasis by NK cells. Cancer Cell 32:135–154

    PubMed  Google Scholar 

  15. Terrén I, Mikelez I, Odriozola I et al (2018) Implication of interleukin-12/15/18 and ruxolitinib in the phenotype, proliferation, and polyfunctionality of human cytokine-preactivated natural killer cells. Front Immunol 9:737

    PubMed  PubMed Central  Google Scholar 

  16. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell–mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM (2015) NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6:368

    PubMed  PubMed Central  Google Scholar 

  18. Lu H (2014) TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front Immunol 5:83

    PubMed  PubMed Central  Google Scholar 

  19. Hubert M, Gobbini E, Couillault C et al (2020) IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci Immunol 5:16

    Google Scholar 

  20. Sisirak V, Faget J, Gobert M et al (2012) Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Can Res 72:5188–5197

    CAS  Google Scholar 

  21. Satthaporn S, Robins A, Vassanasiri W et al (2004) Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother 53:510–518

    PubMed  Google Scholar 

  22. Della Bella S, Gennaro M, Vaccari M et al (2003) Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 89:1463–1472

    CAS  PubMed  Google Scholar 

  23. Sawant DV, Yano H, Chikina M et al (2019) Adaptive plasticity of IL-10+ and IL-35+ T reg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol 20:724–735

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vences-Catalán F, Rajapaksa R, Srivastava MK et al (2015) Tetraspanin CD81 promotes tumor growth and metastasis by modulating the functions of T regulatory and myeloid-derived suppressor cells. Can Res 75:4517–4526

    Google Scholar 

  25. Oshi M, Asaoka M, Tokumaru Y et al (2020) Abundance of regulatory T cell (Treg) as a predictive biomarker for neoadjuvant chemotherapy in triple-negative breast cancer. Cancers 12:3038

    CAS  PubMed Central  Google Scholar 

  26. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Can Res 56:4625–4629

    CAS  Google Scholar 

  27. Zhang Q-W, Liu L, Gong C-Y et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7:50946

    Google Scholar 

  28. Sousa S, Brion R, Lintunen M et al (2015) Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 17:1–14

    CAS  Google Scholar 

  29. Su S, Liu Q, Chen J et al (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25:605–620

    PubMed  Google Scholar 

  30. Wagner J, Rapsomaniki MA, Chevrier S et al (2019) A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177:1330–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang P-F, Song S-Y, Wang T-J et al (2018) Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: a meta-analysis of 40 studies. Oncoimmunology 7:1494113

    Google Scholar 

  32. Biffi G, Oni TE, Spielman B et al (2019) IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov 9:282–301

    PubMed  Google Scholar 

  33. Costa A, Kieffer Y, Scholer-Dahirel A et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33:463–479

    CAS  PubMed  Google Scholar 

  34. Friedman G, Levi-Galibov O, David E et al (2020) Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs to clinical outcome. Nature Cancer 1:692–708

    Google Scholar 

  35. Wu SZ, Roden DL, Wang C et al (2020) Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J 39:104063

    Google Scholar 

  36. Zhou W, Guo S, Liu M, Burow ME, Wang G (2019) Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr Med Chem 26:3026–3041

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochimica et Biophysica Acta (BBA) 1768:952–963

    CAS  Google Scholar 

  38. Chu QD, Panu L, Holm NT, Li BD, Johnson LW, Zhang S (2010) High chemokine receptor CXCR4 level in triple negative breast cancer specimens predicts poor clinical outcome. J Surg Res 159:689–695

    CAS  PubMed  Google Scholar 

  39. Li Z, Zhou J, Zhang J, Li S, Wang H, Du J (2019) Cancer-associated fibroblasts promote PD-L1 expression in mice cancer cells via secreting CXCL5. Int J Cancer 145:1946–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Boissière-Michot F, Jacot W, Fraisse J, Gourgou S, Timaxian C, Lazennec G (2020) Prognostic value of CXCR2 in breast cancer. Cancers 12:2076

    PubMed Central  Google Scholar 

  41. Hsu Y, Hou M, Kuo P, Huang Y, Tsai E (2013) Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/snail signaling pathway. Oncogene 32:4436–4447

    CAS  PubMed  Google Scholar 

  42. Houthuijzen J, Jonkers J (2018) Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev 37:577–597

    CAS  PubMed  Google Scholar 

  43. Adams J, Carder PJ, Downey S et al (2000) Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Can Res 60:2898–2905

    CAS  Google Scholar 

  44. Foekens JA, Peters HA, Grebenchtchikov N et al (2001) High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Can Res 61:5407–5414

    CAS  Google Scholar 

  45. Linderholm B, Hellborg H, Johansson U et al (2009) Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol 20:1639–1646

    CAS  PubMed  Google Scholar 

  46. Rossari JR, Metzger-Filho O, Paesmans M et al (2012) Bevacizumab and breast cancer: a meta-analysis of first-line phase III studies and a critical reappraisal of available evidence. J Oncol. https://doi.org/10.1155/2012/417673

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18:1–11

    Google Scholar 

  48. Plava J, Cihova M, Burikova M, Matuskova M, Kucerova L, Miklikova S (2019) Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol Cancer 18:1–10

    Google Scholar 

  49. Jing Y, Han Z, Zhang S, Liu Y, Wei L (2011) Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 1:1–7

    Google Scholar 

  50. Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    CAS  PubMed  Google Scholar 

  51. de Vries NL, Mahfouz A, Koning F, de Miranda NF (2020) Unraveling the complexity of the cancer microenvironment with multidimensional genomic and cytometric technologies. Front Oncol 10:1254

    PubMed  PubMed Central  Google Scholar 

  52. Saraiva DP, Matias AT, Braga S, Jacinto A, Cabral MG (2020) Establishment of a 3D Co-culture with MDA-MB-231 breast cancer cell line and patient-derived immune cells for application in the development of immunotherapies. Front Oncol 10:1543

    PubMed  PubMed Central  Google Scholar 

  53. Hanley CJ, Henriet E, Sirka OK, Thomas GJ, Ewald AJ (2020) Tumor-resident stromal cells promote breast cancer invasion through regulation of the basal phenotype. Mol Cancer Res 18:1615–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhimolea E, de Matos SR, Kansara D et al (2021) Pleiotropic mechanisms drive endocrine resistance in the three-dimensional bone microenvironment. Can Res 81:371–383

    CAS  Google Scholar 

  55. Truong DD, Kratz A, Park JG et al (2019) A human organotypic microfluidic tumor model permits investigation of the interplay between patient-derived fibroblasts and breast cancer cells. Can Res 79:3139–3151

    CAS  Google Scholar 

  56. Neal JT, Li X, Zhu J et al (2018) Organoid modeling of the tumor immune microenvironment. Cell 175:1972–1988

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Worthington P, Pochan DJ, Langhans SA (2015) Peptide hydrogels–versatile matrices for 3D cell culture in cancer medicine. Front Oncol 5:92

    PubMed  PubMed Central  Google Scholar 

  59. Broguiere N, Isenmann L, Hirt C et al (2018) Growth of epithelial organoids in a defined hydrogel. Adv Mater 30:1801621

    Google Scholar 

  60. Lai BFL, Lu RXZ, Hu Y et al (2020) Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. Adv Func Mater 30:2000545

    CAS  Google Scholar 

  61. Dranoff G (2012) Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol 12:61–66

    CAS  Google Scholar 

  62. Grosso JF, Jure-Kunkel MN (2013) CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun Archive 13:14

    Google Scholar 

  63. Kubli SP, Bassi C, Roux C et al (2019) AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci 116:3604–3613

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roux C, Jafari SM, Shinde R et al (2019) Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc Natl Acad Sci 116:4326–4335

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pfefferle AD, Herschkowitz JI, Usary J et al (2013) Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol 14:1–16

    Google Scholar 

  66. Zhong W, Myers JS, Wang F et al (2020) Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics 21:1–17

    Google Scholar 

  67. Lal JC, Townsend MG, Mehta AK et al (2021) Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer. Breast Cancer Res 23:1–24

    Google Scholar 

  68. Marín-Jiménez JA, Capasso A, Lewis MS et al (2021) Testing cancer immunotherapy in a human immune system mouse model: correlating treatment responses to human chimerism, therapeutic variables and immune cell phenotypes. Front Immunol 12:854

    Google Scholar 

  69. Yu H, Borsotti C, Schickel J-N et al (2017) A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production blood. J Am Soc Hematol 129:959–969

    CAS  Google Scholar 

  70. Ito R, Takahashi T, Katano I et al (2013) Establishment of a human allergy model using human IL-3/GM-CSF–Transgenic NOG mice. J Immunol 191:2890–2899

    CAS  PubMed  Google Scholar 

  71. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A (2011) Development of human CD4+ Foxp3+ regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice blood. J Am Soc Hematol 117:3076–3086

    CAS  Google Scholar 

  72. Maser I-P, Hoves S, Bayer C et al (2020) The tumor milieu promotes functional human tumor-resident plasmacytoid dendritic cells in humanized mouse models. Front Immunol 11:2082

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou R, Yazdanifar M, Roy LD et al (2019) CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 10:1149

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rugo HS, Im S-A, Cardoso F, et al. (2021) Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: a phase 3 randomized clinical trial. JAMA Oncol

  75. Chan IS, Knútsdóttir H, Ramakrishnan G et al (2020) Cancer cells educate natural killer cells to a metastasis-promoting cell state. J Cell Biol 219(9):202001134

    Google Scholar 

  76. Malladi S, Macalinao DG, Jin X et al (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165:45–60

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shenouda MM, Gillgrass A, Nham T et al (2017) Ex vivo expanded natural killer cells from breast cancer patients and healthy donors are highly cytotoxic against breast cancer cell lines and patient-derived tumours. Breast Cancer Res 19:1–14

    Google Scholar 

  78. Schmid P, Cortes J, Pusztai L et al (2020) Pembrolizumab for early triple-negative breast cancer. N Engl J Med 382:810–821

    CAS  PubMed  Google Scholar 

  79. Hernando-Calvo A, Cescon DW, Bedard PL (2021) Novel classes of immunotherapy for breast cancer. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-021-06405-2

  80. Gattinoni L, Zhong X-S, Palmer DC et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15:808–813

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Castagnoli L, Cancila V, Cordoba-Romero SL et al (2019) WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 38:4047–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Adams S, Kozhaya L, Martiniuk F et al (2012) Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res 18:6748–6757

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dewan MZ, Vanpouille-Box C, Kawashima N et al (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 18:6668–6678

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zanker DJ, Spurling AJ, Brockwell NK et al (2020) Intratumoral administration of the Toll-like receptor 7/8 agonist 3M–052 enhances interferon-driven tumor immunogenicity and suppresses metastatic spread in preclinical triple-negative breast cancer. Clin Transl Immunol 9:1177

    Google Scholar 

  85. Siu L, Brody J, Gupta S et al (2020) Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J Immunother Cancer 8:20

    Google Scholar 

  86. Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15:e257–e267

    CAS  PubMed  Google Scholar 

  87. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    CAS  PubMed  Google Scholar 

  88. Bryson PD, Han X, Truong N, Wang P (2017) Breast cancer vaccines delivered by dendritic cell-targeted lentivectors induce potent antitumor immune responses and protect mice from mammary tumor growth. Vaccine 35:5842–5849

    PubMed  PubMed Central  Google Scholar 

  89. Oba T, Makino K, Kajihara R et al. (2021) In situ delivery of iPSC-derived dendritic cells with local radiotherapy generates systemic antitumor immunity and potentiates PD-L1 blockade in preclinical poorly immunogenic tumor models. J Immunother Cancer 9

  90. Olkhanud PB, Baatar D, Bodogai M et al (2009) Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Can Res 69:5996–6004

    CAS  Google Scholar 

  91. Ephrem A, Epstein AL, Stephens GL, Thornton AM, Glass D, Shevach EM (2013) Modulation of T reg cells/T effector function by GITR signaling is context–dependent. Eur J Immunol 43:2421–2429

    CAS  PubMed  Google Scholar 

  92. Zappasodi R, Sirard C, Li Y et al (2019) Rational design of anti-GITR-based combination immunotherapy. Nat Med 25:759–766

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Woods DM, Ramakrishnan R, Sodré AL, Berglund A, Weber J (2017) PD-1 blockade induces phosphorylated STAT3 and results in an increase of Tregs with reduced suppressive function. Am Assoc Immnol 4:56–57

    Google Scholar 

  94. Wei S, Kryczek I, Edwards RP et al (2007) Interleukin-2 administration alters the CD4+ FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Can Res 67:7487–7494

    CAS  Google Scholar 

  95. van der Vliet JJ, Koon HB, Yue SC et al (2007) Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin Cancer Res 2007(13):2100–2108

    Google Scholar 

  96. Generali D, Bates G, Berruti A et al (2009) Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res 15:1046–1051

    CAS  PubMed  Google Scholar 

  97. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+ CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    CAS  PubMed  Google Scholar 

  98. Lopez‐Yrigoyen M, Cassetta L, Pollard JW (2020) Macrophage targeting in cancer. Ann NY Acad Sci

  99. Dieci MV, Miglietta F, Guarneri V (2021) Immune infiltrates in breast cancer: recent updates and clinical implications. Cells 10:223

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu M, Liu M, Du X et al (2015) Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance through shifting tumor-associated macrophages from M2 to M1 phenotype. J Immunol 194:4997–5006

    CAS  PubMed  Google Scholar 

  101. Leal T, Horn L, Velastegui K, Christensen J, Chen I, Spira A (2017) PS0208 evidence of clinical activity of sitravatinib in combination with nivolumab in NSCLC patients progressing on prior checkpoint inhibitor therapy: topic: medical oncology. J Thoracic Oncol 12:S1567

    Google Scholar 

  102. Percent IJ, Reynolds CH, Konduri K et al. (2020) Phase III trial of sitravatinib plus nivolumab vs. docetaxel for treatment of NSCLC after platinum-based chemotherapy and immunotherapy (SAPPHIRE). Am Soc Clin Oncol

  103. Georgoudaki A-M, Prokopec KE, Boura VF et al (2016) Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep 15:2000–2011

    CAS  PubMed  Google Scholar 

  104. Rogers TL, Holen I (2011) Tumour macrophages as potential targets of bisphosphonates. J Transl Med 9:1–17

    Google Scholar 

  105. Hannesdóttir L, Tymoszuk P, Parajuli N et al (2013) Lapatinib and doxorubicin enhance the S tat1-dependent antitumor immune response. Eur J Immunol 43:2718–2729

    PubMed  Google Scholar 

  106. Vincent J, Mignot G, Chalmin F et al (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell–dependent antitumor immunity. Can Res 70:3052–3061

    CAS  Google Scholar 

  107. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17:887–904

    CAS  PubMed  Google Scholar 

  109. Lefort S, Thuleau A, Kieffer Y et al (2017) CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients. Oncogene 36:1211–1222

    CAS  PubMed  Google Scholar 

  110. Feig C, Jones JO, Kraman M et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci 110:20212–20217

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gong J, Hendifar A, Tuli R et al (2018) Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade. Clin Transl Med 7:1–16

    CAS  Google Scholar 

  112. Cazet AS, Hui MN, Elsworth BL et al (2018) Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun 9:1–18

    CAS  Google Scholar 

  113. Liu J, Liao S, Diop-Frimpong B et al (2012) TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci 109:16618–16623

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lind H, Gameiro SR, Jochems C et al (2020) Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J Immunother Cancer 8:14

    Google Scholar 

  115. El-Sahli S, Hua K, Sulaiman A et al (2021) A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death Dis 12:1–10

    Google Scholar 

  116. Boucher Y, Kumar AS, Posada JM et al (2021) Bevacizumab improves tumor infiltration of mature dendritic cells and effector T-cells in triple-negative breast cancer patients. NPJ Precis Oncol 5:1–6

    Google Scholar 

  117. Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382:1894–1905

    CAS  PubMed  Google Scholar 

  118. Funahashi Y, Okamoto K, Adachi Y et al (2014) Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models. Cancer Sci 105:1334–1342

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Brooke E. Wilson was supported as a National Breast Cancer Foundation of Australia International Fellow. Dr. David W. Cescon is supported by the Canadian Institutes of Health Research, the Princess Margaret Cancer Foundation and the DH Gales Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiara Gorrini or David W. Cescon.

Ethics declarations

Conflict of interest

BW reports consulting fees from Maple Health Group, outside the submitted work. DWC reports consulting/advisory fees from Agendia, AstraZeneca, Dynamo Therapeutics, Eisai, Exact Sciences, Gilead, GlaxoSmithKline, Merck, Novartis, Pfizer, Puma Biotechnology, and Roche; research support (to institution) from GlaxoSmithKline, Inivata, Merck, Pfizer and Roche; and intellectual property including methods of treating cancers characterized by a high expression level of spindle and kinetochore-associated complex subunit 3 (ska3) gene (US62/675,228), all outside of the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, B.E., Gorrini, C. & Cescon, D.W. Breast cancer immune microenvironment: from pre-clinical models to clinical therapies. Breast Cancer Res Treat 191, 257–267 (2022). https://doi.org/10.1007/s10549-021-06431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06431-0

Keywords

Navigation