Skip to main content

Advertisement

Log in

Estrogen-regulated AGR3 activates the estrogen receptor signaling pathway to promote tamoxifen resistance in breast cancer

  • Brief Communication
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Anterior gradient 3 (AGR3) is associated with breast cancer progression, but its relationship with estrogen and tamoxifen resistance in breast cancer is still unclear. This study was designed to investigate the correlation of ARG3 and estrogen as well as the roles of ARG3 in tamoxifen resistance in breast cancer.

Methods

Online database including GEPIA, UALCAN, and TCGA and rVista predictive tool were applied to analyze the expression patterns of AGR3 and its relationship with estrogen receptor 1. AGR3 knockdown and overexpression cell models were constructed. Luciferase reporter assay and ChIP were performed to investigate intermolecular interactions. Western blotting and qPCR were applied to assess targets at mRNA and protein levels, respectively. Cell counting and MTT assay were applied to determine the cell proliferation.

Results

An elevation of AGR3 was observed in patients with breast cancer, especially in the patients with estrogen receptor (ER)-positive breast cancer. The TCGA dataset and in vitro data supported that AGR3 was positively correlated to ER. Further results demonstrated that ER protein bound to AGR3 promoter sites. AGR3 expression exhibited a positive correlation to cell viability. Besides, AGR3 promoted tamoxifen resistance in breast cancer.

Conclusion

AGR3 is associated with estrogen and promotes tamoxifen resistance in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Supporting data could be obtained upon reasonable request to the authors.

Abbreviations

AGR3:

Anterior gradient 3

ESR1:

Estrogen receptor 1

ER:

Estrogen receptor

PR:

Progesterone receptor

HER:

Epidermal growth factor receptor

FBS:

Fetal bovine serum

RPMI:

Roswell park memorial institute

qPCR:

Quantitative polymerase chain reaction

ChIP:

Chromatin immunoprecipitation

SD:

Standard deviation

HER:

Hormone receptor

References

  1. Harris JR, Lippman ME, Veronesi U, Willett W (1992) Breast cancer. N Engl J Med 327:319–328

    Article  CAS  Google Scholar 

  2. Carlson RW, Allred DC, Anderson BO, Burstein HJ, Carter WB, Edge SB, Erban JK, Farrar WB, Goldstein LJ, Gradishar WJ (2009) Breast cancer. J Natl Compr Canc Netw 7:122–192

    Article  CAS  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  Google Scholar 

  4. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691

    Article  Google Scholar 

  5. Chlebowski RT, Anderson GL (2012) Changing concepts: menopausal hormone therapy and breast cancer. J Natl Cancer Inst 104:517–527

    Article  CAS  Google Scholar 

  6. Bush TL, Whiteman M, Flaws JA (2001) Hormone replacement therapy and breast cancer: a qualitative review. Obstet Gynecol 98:498–508

    PubMed  CAS  Google Scholar 

  7. Bergman L, Beelen ML, Gallee MP, Hollema H, Benraadt J, van Leeuwen FE (2000) Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. The Lancet 356:881–887

    Article  CAS  Google Scholar 

  8. Ciocca DR, Elledge R (2000) Molecular markers for predicting response to tamoxifen in breast cancer patients. Endocrine 13:1–10

    Article  CAS  Google Scholar 

  9. Bernstein L, Deapen D, Cerhan JR, Schwartz SM, Liff J, McGann-Maloney E, Perlman JA, Ford L (1999) Tamoxifen therapy for breast cancer and endometrial cancer risk. J Natl Cancer Inst 91:1654–1662

    Article  CAS  Google Scholar 

  10. Chang M (2012) Tamoxifen resistance in breast cancer. Biomol Ther 20:256

    Article  CAS  Google Scholar 

  11. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643–658

    Article  CAS  Google Scholar 

  12. King ER, Tung CS, Tsang YT, Zu Z, Lok GT, Deavers MT, Malpica A, Wolf JK, Lu KH, Birrer MJ (2011) The anterior gradient homolog 3 (AGR3) gene is associated with differentiation and survival in ovarian cancer. Am J Surg Pathol 35:904

    Article  Google Scholar 

  13. Gray TA, MacLaine NJ, Michie CO, Bouchalova P, Murray E, Howie J, Hrstka R, Maslon MM, Nenutil R, Vojtesek B (2012) Anterior Gradient-3: a novel biomarker for ovarian cancer that mediates cisplatin resistance in xenograft models. J Immunol Methods 378:20–32

    Article  CAS  Google Scholar 

  14. Obacz J, Brychtova V, Podhorec J, Fabian P, Dobes P, Vojtesek B, Hrstka R (2015) Anterior gradient protein 3 is associated with less aggressive tumors and better outcome of breast cancer patients. Onco Targets Ther 8:1523

    PubMed  PubMed Central  Google Scholar 

  15. Brychtova V, Zampachova V, Hrstka R, Fabian P, Novak J, Hermanova M, Vojtesek B (2014) Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Exp Mol Pathol 96:375–381

    Article  CAS  Google Scholar 

  16. Bu H, Schweiger MR, Manke T, Wunderlich A, Timmermann B, Kerick M, Pasqualini L, Shehu E, Fuchsberger C, Cato AC (2013) Anterior gradient 2 and 3–two prototype androgen-responsive genes transcriptionally upregulated by androgens and by oestrogens in prostate cancer cells. FEBS J 280:1249–1266

    Article  CAS  Google Scholar 

  17. Jian L, Xie J, Guo S, Yu H, Chen R, Tao K, Yang C, Li K, Liu S (2020) AGR3 promotes estrogen receptor-positive breast cancer cell proliferation in an estrogen-dependent manner. Oncol Lett 20:1441–1451

    Article  CAS  Google Scholar 

  18. Hirao-Suzuki M, Takeda S, Kodama Y, Takiguchi M, Toda A, Ohara M (2020) Metalloestrogenic effects of cadmium are absent in long-term estrogen-deprived MCF-7 cells: evidence for the involvement of constitutively activated estrogen receptor α and very low expression of G protein-coupled estrogen receptor 1. Toxicol Lett 319:22–30

    Article  CAS  Google Scholar 

  19. Sun Y, Zhang P, Pan X, Zhang D, Qiu W, Wang P (2016) Effects of Sp1 on the basic transcriptional activity of intestinal trefoil factor promoter. Zhonghua shao shang za zhi= Zhonghua shaoshang zazhi= Chin J Burns 32:413–417

    CAS  Google Scholar 

  20. Ray S, Das SK (2006) Chromatin immunoprecipitation assay detects er recruitment to gene specific promoters in uterus. Biol Proced Online 8:69–76

    Article  CAS  Google Scholar 

  21. Guo H, Gao XH, Liu C, Li JH (2018) An unusual localised pigmented skin lesion on the nipple-areola complex. BMJ 362:k2047. https://doi.org/10.1136/bmj.k2047

    Article  PubMed  Google Scholar 

  22. Garczyk S, von Stillfried S, Antonopoulos W, Hartmann A, Schrauder MG, Fasching PA, Anzeneder T, Tannapfel A, Ergönenc Y, Knüchel R (2015) AGR3 in breast cancer: prognostic impact and suitable serum-based biomarker for early cancer detection. PLoS ONE 10:e0122106

    Article  CAS  Google Scholar 

  23. Kennecke H, Yerushalmi R, Woods R, Cheang MCU, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277

    Article  Google Scholar 

  24. Alcaraz-Pérez F, Mulero V, Cayuela ML (2008) Application of the dual-luciferase reporter assay to the analysis of promoter activity in Zebrafish embryos. BMC Biotechnol 8:1–8

    Article  CAS  Google Scholar 

  25. Shang W, Jiang Y, Boettcher M, Ding K, Mollenauer M, Liu Z, Wen X, Liu C, Hao P, Zhao S, McManus MT, Wei L, Weiss A, Wang H (2018) Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. Proc Natl Acad Sci USA 115:E4051–E4060. https://doi.org/10.1073/pnas.1801340115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bhardwaj P, Au CC, Benito-Martin A, Ladumor H, Oshchepkova S, Moges R, Brown KA (2019) Estrogens and breast cancer: Mechanisms involved in obesity-related development, growth and progression. J Steroid Biochem Mol Biol 189:161–170

    Article  CAS  Google Scholar 

  27. Bombonati A, Sgroi DC (2011) The molecular pathology of breast cancer progression. J Pathol 223:308–318

    Article  CAS  Google Scholar 

  28. Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G, Ruiz Esparza-Garrido R, Velázquez-Flores MA, Arenas-Aranda D (2014) Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer. Oncol Rep 32:3–15

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shi.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethic Committee of Shandong Provincial Hospital affiliated to Shandong First Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Sun, Y., Chen, X. et al. Estrogen-regulated AGR3 activates the estrogen receptor signaling pathway to promote tamoxifen resistance in breast cancer. Breast Cancer Res Treat 190, 203–211 (2021). https://doi.org/10.1007/s10549-021-06385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06385-3

Keywords

Navigation