Advertisement

Breast density measured volumetrically in a clinical environment: cross-sectional study with photon counting technology

  • Jean L. BrowneEmail author
  • Lilian Casas
  • Guillermo Santandreu
  • Ignacio Rodriguez
  • Beatriz Navarro
  • Francesc Tresserra
  • M. Angela Pascual
Epidemiology
  • 24 Downloads

Abstract

Objective

Mammographic breast density (BDen), the ratio of glandular volume (GVol) to breast volume (BVol), is the second most prevalent risk factor for breast cancer (BC). Newly developed photon counting technology allows precise and systematic measurements in clinical practice. Our objective is to see how these parameters change with age in women with and without cancer.

Materials and methods

This retrospective study analyzed results of BDen, GVol, and BVol in 64,182 mammograms performed with photon counting technology on 32,448 consecutive women from April 2014 to December 2015. Only their first study was included. We excluded women with incomplete data or with breast implants.

Results

Mean age of women without BC diagnosed during the study period was 52.1 ± 9.9. BC and was found in 263 women (0.81%). Mean age was 53.0 ± 10.4. BDen, GVol, and BVol were 14%, 24%, and 2% greater in women with BC (P < 0.001 for BDen and GVol and P = 0.02 for BVol). BDen and GVol diminished following similar patterns across age in both groups, with soft slopes before and after a steep drop from 50 to 60, probably due to menopause.

Conclusion

BDen diminishes with age in women with or without BC, but it is generally higher in women with BC. GVol could be a more robust indicator associated with BC risk than BDen. This technology can ease the way to studies of interventions to diminish BDen (or GVol) in the hope of diminishing BC incidence or predict if longitudinal changes are indicative of impending cancer.

Keywords

Breast density Mammography Volumetric Breast cancer Photon counting technology 

Abbreviations

ACR

American College of Radiology

BC

Breast cancer

BDen

Breast density

BI-RADS

Breast imaging reporting and data system

BVol

Breast volume

CC

Cranio-caudal

GAM

Generalized Additive Model

GVol

Glandular volume

MLO

Medio-lateral oblique

NCCB

Non-cancer contralateral breast

SD

Standard deviation

US

Ultrasound

Notes

Acknowledgements

The authors wish to thank Beatriz Viejo PhD. for writing and editorial assistance in the preparation of this manuscript. This study has been carried out under the auspices of the Càtedra d’Investigació en Obstetrícia i Ginecologia of the Autonomous University of Barcelona, Spain.

Author contributions

Study concepts: Jean L. Browne, L Casas, M. Angela Pascual, I. Rodriguez, Santandreu, B. Navarro; F. Tresserra. Study design: Jean L. Browne, L Casas, M. Angela Pascual, I. Rodriguez, Santandreu, B. Navarro; F. Tresserra. Data acquisition: I. Rodriguez; Jean L. Browne. Quality control of data and algorithms: I. Rodriguez. Data analysis and interpretation: Jean L. Browne; I. Rodriguez; M. Angela Pascual. Statistical analysis: I. Rodriguez. Manuscript preparation: Jean L. Browne; M. Angela Pascual; G. Santandreu; B. Navarro; F. Tresserra. Manuscript editing: Jean L. Browne; M. Angela Pascual; G. Santandreu; B. Navarro; L. Casas. Manuscript review: Jean L. Browne; M. Angela Pascual; F. Tresserra.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript complies with the current laws of the country.

Statement of human rights

All procedures performed in the study were in accordance with the ethical standards of the institutional review board IRB (Càtedra d´Investigació en Obstetricia I Ginecologia, Universitat Autònoma de Barcelona, reference number: 191611092) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Wolfe JN (1976) Breast patterns as an index of risk for developing breast cancer. AJR Am J Roentgenol 126(6):1130–1137.  https://doi.org/10.2214/ajr.126.6.1130 CrossRefPubMedGoogle Scholar
  2. 2.
    McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15(6):1159–1169.  https://doi.org/10.1158/1055-9965.EPI-06-0034 CrossRefPubMedGoogle Scholar
  3. 3.
    Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K (2017) Breast cancer surveillance consortium. Population-attributable risk proportion of clinical risk factors for breast cancer. JAMA Oncol 3(9):1228–1236.  https://doi.org/10.1001/jamaoncol.2016.6326 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Twombly R (2007) Dense breasts linked to higher breast cancer risk, but clinicians unsure of application. J Natl Cancer Inst 99(22):1661–1663.  https://doi.org/10.1093/jnci/djm243 CrossRefPubMedGoogle Scholar
  5. 5.
    Kopans D (2008) Basic physics and doubts about relationship between mammographically determines tissue density and breast cancer risk. Radiology 246:2.  https://doi.org/10.1148/radiol.2461070309 CrossRefGoogle Scholar
  6. 6.
    Yaffe MJ (2008) Mammographic density. Measurement of mammographic density. Breast Cancer Res 10(3):209.  https://doi.org/10.1186/bcr2102 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ding H, Molloi S (2012) Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study. Phys Med Biol 57(15):4719–4738.  https://doi.org/10.1088/0031-9155/57/15/4719 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Machida Y, Tozaki M, Yoshida T, Saita A, Yakabe M, Nii K (2014) Feasibility study of a breast density measurement within a direct photon-counting mammography scanner system. Jpn J Radiol 32(9):561–567.  https://doi.org/10.1007/s11604-014-0333-x CrossRefPubMedGoogle Scholar
  9. 9.
    Johansson H, von Tiedemann M, Erhard K, Heese H, Ding H, Molloi S et al (2017) Breast-density measurement using photon-counting spectral mammography. Med Phys 44(7):3579–3593.  https://doi.org/10.1002/mp.12279 CrossRefPubMedGoogle Scholar
  10. 10.
    Erhard K, Kilburn-Toppin F, Willsher P, Moa E, Fredenberg E, Wieberneit N et al (2016) Characterization of cystic lesions by spectral mammography: results of a clinical pilot study. Invest Radiol 51(5):340–347.  https://doi.org/10.1097/RLI.0000000000000246 CrossRefPubMedGoogle Scholar
  11. 11.
    Sickles EA, D’Orsi CJ, Bassett LW et al (2013) ACR BI-RADS® mammography. In: ACR BI-RADS® atlas. Breast imaging reporting and data system. American College of Radiology, Reston, VAGoogle Scholar
  12. 12.
    Wood SN (2003) Thin-plate regression splines. J R Stat Soc 65(1):95–114.  https://doi.org/10.1111/1467-9868.00374 CrossRefGoogle Scholar
  13. 13.
    Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99(467):673–686.  https://doi.org/10.1198/016214504000000980 CrossRefGoogle Scholar
  14. 14.
    Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc 73(1):3–36.  https://doi.org/10.1111/j.1467-9868.2010.00749.x CrossRefGoogle Scholar
  15. 15.
    R Development Core Team (2008) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0. www.R-project.org. Accessed 16 Oct 2017
  16. 16.
    Wood SN (2016) Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  17. 17.
    Destounis Stamatia, Arieno Andrea, Morgan Renee, Roberts Christina, Chan Ariane (2017) Qualitative versus quantitative mammographic breast density assessment: applications for the US and Abroad. Diagnostics 7:30.  https://doi.org/10.3390/diagnostics7020030 CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Burton A, Maskarinec G, Perez-Gomez B, Vachon C, Miao H, Lajous M et al (2017) Mammographic density and ageing: a collaborativepooled analysis of cross-sectional data from 22 countries worldwide. PLoS Med 14(6):e1002335.  https://doi.org/10.1371/journal.pmed.1002335 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lokate M, Stellato R, Veldhuis W, Peeters P, vanGils CH (2013) Age-related changes in mammographic density and breast cancer risk. Am J Epidemiol 178(1):101–109CrossRefGoogle Scholar
  20. 20.
    Goodwin PJ, Boyd NF (1988) Mammographic parenchymal pattern and breast cancer risk: a critical appraisal of the evidence. Am J Epidemiol 127(6):1097–1108CrossRefGoogle Scholar
  21. 21.
    McCarthy AM, Keller BM, Pantalone LM, Hsieh MK, Synnestvedt M, Conant EF et al (2016) Racial differences in quantitative measures of area and volumetric breast density. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djw104 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brand JS, Czene K, Shepherd JA, Leifland K, Heddson B, Sundbom A et al (2014) Automated measurement of volumetric mammographic density: a tool for widespread breast cancer risk assessment. Cancer Epidemiol Biomarkers Prev 23(9):1764–1772.  https://doi.org/10.1158/1055-9965.EPI-13-1219 CrossRefPubMedGoogle Scholar
  23. 23.
    Kuchiki M, Hosoya T, Fukao A (2010) Assessment of breast cancer risk based on mammary gland volume measured with CT. Breast Cancer (Auckl) 4:57–64.  https://doi.org/10.4137/BCBCR.S5248 CrossRefGoogle Scholar
  24. 24.
    Shepherd JA, Kerlikowske K, Ma L, Duewer F, Fan B, Wang J et al (2011) Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 20(7):1473–1482.  https://doi.org/10.1158/1055-9965.EPI-10-1150 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jansen LA, Backstein RM, Brown MH (2014) Breast size and breast cancer: a systematic review. J Plast Reconstr Aesthet Surg 67(12):1615–1623.  https://doi.org/10.1016/j.bjps.2014.10.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Abdolell M, Tsuruda KM, Brown P, Caines JS, Iles SE (2017) Breast density scales: the metric matters. Br J Radiol 90:20170307.  https://doi.org/10.1259/bjr.20170307 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Boyd NF et al (2011) Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 13:223.  https://doi.org/10.1186/bcr2942 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brentnall AR, Cohn WF, Knaus WA, Yaffe MJ, Cuzick J, Harvey JA (2019) A Case-control study to add volumetric or clinical mammographic density into the tyrer-cuzick breast cancer risk model. J Breast Imaging 1(2):99–106.  https://doi.org/10.1093/jbi/wbz006 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Obstetrics, Gynecology and ReproductionHospital Universitari DexeusBarcelonaSpain
  2. 2.Department of PathologyHospital Universitari DexeusBarcelonaSpain

Personalised recommendations