The synergistic effect between adult weight changes and CYP24A1 polymorphisms is associated with pre- and postmenopausal breast cancer risk

  • Shang Cao
  • Feiran Wei
  • Jinyi Zhou
  • Zheng Zhu
  • Wei Li
  • Ming WuEmail author



Vitamin D (VD) metabolism regulates adipose tissue, lipogenesis inflammation, and tumor growth. CYP24A1 is the key enzyme for metabolic inactivation of active VD (1,25(OH)2D3). We examined whether common germline single nucleotide polymorphisms (SNPs) in the CYP24A1 gene could affect the association between adult weight gain and breast cancer (BC) risk.


The population-based case–control study included 818 patients with primary BC and 935 residence and age matched healthy controls. We studied the relationships between CYP24A1 gene SNPs (rs2209314, rs2585428, rs2762941, rs3787555, rs4809959, rs73913757, rs912505, and rs927a650), adult weight change and BC risk. Gene–weight change interactions were analyzed.


Neither of CYP24A1 gene SNPs was associated with BC risk in the study participants. However, we found consistent gene–weight interactions with increasing adult weight gain for CYP24A1rs2762941 (P-interaction = 0.0089) and CYP24A1rs927650 (P-interaction = 0.0283). Adult weight gain has a higher premenopausal BC risk with double variant T alleles of rs927650 compared to women carrying at least one wild-type C allele (OR for TT = 1.82, 95% CI 1.10–3.01; for CT = 0.93, 95% CI 0.76–1.14; for CC = 1.12 95% CI 0.93–1.35). Women with double wild-type A alleles were at a higher postmenopausal BC risk compared to those carrying at least one variant-type G allele (OR for AA = 1.51, 95% CI 1.29–1.76; for AG = 1.13, 95% CI 0.98–1.30; for GG = 1.22 95% CI 0.95–1.57). When stratified by CYP24A1 SNPs genotypes, weight gain in adulthood increased postmenopausal BC risk of women with homozygous allele compared to women with heterozygotes allele.


Significant interactions of weight change with CYP24A1 polymorphisms suggest CYP24A1 as a potential link between weight change and BC risk and the possibility that the impact of adult weight gain on postmenopausal BC risk may be enhanced by homozygous alleles of CYP24A1 SNPs.


Breast cancer Weight change CYP24A1 Single nucleotide polymorphisms 



We appreciate all study participants for their contributions. We thank the entire data collection team. Incident breast cancer cases and controls for this study were collected by Wuxi Center for Disease Control, Jiangsu Center for Disease Control.


This study was supported by World Cancer Research Fund (2011/RFA/473).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethical committee of the Jiangsu Center for Disease Control and Prevention (Jiangsu, China).

Informed consent

All participants signed a written informed consent.

Supplementary material

10549_2019_5484_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 32 kb)


  1. 1.
    Parkin DM (2011) The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer 105(Suppl 2):S2–S5PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lahmann PH, Hoffmann K, Allen N, van Gils CH, Khaw KT, Tehard B, Berrino F, Tjonneland A, Bigaard J, Olsen A et al (2004) Body size and breast cancer risk: findings from the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer 111(5):762–771PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lahmann PH, Schulz M, Hoffmann K, Boeing H, Tjonneland A, Olsen A, Overvad K, Key TJ, Allen NE, Khaw KT et al (2005) Long-term weight change and breast cancer risk: the European prospective investigation into cancer and nutrition (EPIC). Br J Cancer 93(5):582–589PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, Ochs-Balcom HM, Thomson CA, Caan BJ, Tinker LF et al (2015) Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol 1(5):611–621PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Keum N, Greenwood DC, Lee DH, Kim R, Aune D, Ju W, Hu FB, Giovannucci EL (2015) Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst 107(2):088CrossRefGoogle Scholar
  6. 6.
    White AJ, Nichols HB, Bradshaw PT, Sandler DP (2015) Overall and central adiposity and breast cancer risk in the Sister Study. Cancer 121(20):3700–3708PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Imperial College London (2008) WCRF/AICR systematic literature review continuous update report. The associations between food, nutrition and physical activity and the risk of breast cancerGoogle Scholar
  8. 8.
    Cao S, Zhou J, Zhu Z, Wei F, Li W, Lu S, Su J, Yu H, Du W, Cui L et al (2018) Adult weight change and the risk of pre- and postmenopausal breast cancer in the Chinese Wuxi Exposure And Breast Cancer Study. Breast Cancer Res Treat 173(3):647–655PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gallagher JC, Yalamanchili V, Smith LM (2013) The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women. J Steroid Biochem Mol Biol 136j:195–200CrossRefGoogle Scholar
  10. 10.
    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72(3):690–693CrossRefGoogle Scholar
  11. 11.
    Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, Cooper JD, Dastani Z, Li R, Houston DK et al (2013) Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS MED 10(2):e1001383PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wamberg L, Christiansen T, Paulsen SK, Fisker S, Rask P, Rejnmark L, Richelsen B, Pedersen SB (2013) Expression of vitamin D-metabolizing enzymes in human adipose tissue—the effect of obesity and diet-induced weight loss. Int J Obes (Lond) 37(5):651–657CrossRefGoogle Scholar
  13. 13.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281CrossRefGoogle Scholar
  14. 14.
    Kim Y, Je Y (2014) Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: a meta-analysis. Br J Cancer 110(11):2772–2784PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sheng L, Callen DF, Turner AG (2018) Vitamin D3 signaling and breast cancer: insights from transgenic mouse models. J Steroid Biochem Mol Biol 178:348–353PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lopes N, Sousa B, Martins D, Gomes M, Vieira D, Veronese LA, Milanezi F, Paredes J, Costa JL, Schmitt F (2010) Alterations in vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer 10:483PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Townsend K, Banwell CM, Guy M, Colston KW, Mansi JL, Stewart PM, Campbell MJ, Hewison M (2005) Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res 11(9):3579–3586PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhalehjoo N, Shakiba Y, Panjehpour M (2017) Gene expression profiles of CYP24A1 and CYP27B1 in malignant and normal breast tissues. Mol Med Rep 15(1):467–473PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lu S, Qian Y, Huang X, Yu H, Yang J, Han R, Su J, Du W, Zhou J, Dong M et al (2017) The association of dietary pattern and breast cancer in Jiangsu, China: a population-based case–control study. PLoS ONE 12(9):e184453Google Scholar
  20. 20.
    Narvaez CJ, Matthews D, LaPorta E, Simmons KM, Beaudin S, Welsh J (2014) The impact of vitamin D in breast cancer: genomics, pathways, metabolism. Front Physiol 5:213PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Yao S, Zirpoli G, Bovbjerg DH, Jandorf L, Hong CC, Zhao H, Sucheston LE, Tang L, Roberts M, Ciupak G et al (2012) Variants in the vitamin D pathway, serum levels of vitamin D, and estrogen receptor negative breast cancer among African-American women: a case-control study. Breast Cancer Res 14(2):R58PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Oh JJ, Byun SS, Lee SE, Hong SK, Jeong CW, Choi WS, Kim D, Kim HJ, Myung SC (2014) Genetic variants in the CYP24A1 gene are associated with prostate cancer risk and aggressiveness in a Korean study population. Prostate Cancer Prostatic Dis 17(2):149–156PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Holt SK, Kwon EM, Koopmeiners JS, Lin DW, Feng Z, Ostrander EA, Peters U, Stanford JL (2010) Vitamin D pathway gene variants and prostate cancer prognosis. Prostate 70(13):1448–1460PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hibler EA, Klimentidis YC, Jurutka PW, Kohler LN, Lance P, Roe DJ, Thompson PA, Jacobs ET (2015) CYP24A1 and CYP27B1 polymorphisms, concentrations of vitamin D metabolites, and odds of colorectal adenoma recurrence. Nutr Cancer 67(7):1131–1141PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Penna-Martinez M, Ramos-Lopez E, Stern J, Kahles H, Hinsch N, Hansmann ML, Selkinski I, Grunwald F, Vorlander C, Bechstein WO et al (2012) Impaired vitamin D activation and association with CYP24A1 haplotypes in differentiated thyroid carcinoma. Thyroid 22(7):709–716PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Von Schuckmann LA, Law MH, Montgomery GW, Green AC, van der Pols JC (2016) Vitamin D pathway gene polymorphisms and keratinocyte cancers: a nested case–control study and meta-analysis. Anticancer Res 36(5):2145–2152Google Scholar
  27. 27.
    Sun H, Wang C, Hao M, Sun R, Wang Y, Liu T, Cong X, Liu Y (2016) CYP24A1 is a potential biomarker for the progression and prognosis of human colorectal cancer. Hum Pathol 50:101–108PubMedCrossRefGoogle Scholar
  28. 28.
    Miettinen S, Ahonen MH, Lou YR, Manninen T, Tuohimaa P, Syvala H, Ylikomi T (2004) Role of 24-hydroxylase in vitamin D3 growth response of OVCAR-3 ovarian cancer cells. Int J Cancer 108(3):367–373PubMedCrossRefGoogle Scholar
  29. 29.
    Osanai M, Lee GH (2016) CYP24A1-induced vitamin D insufficiency promotes breast cancer growth. Oncol Rep 36(5):2755–2762PubMedCrossRefGoogle Scholar
  30. 30.
    Kamei Y, Kawada T, Kazuki R, Ono T, Kato S, Sugimoto E (1993) Vitamin D receptor gene expression is up-regulated by 1,25-dihydroxyvitamin D3 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 193(3):948–955PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Landrier JF, Marcotorchino J, Tourniaire F (2012) Lipophilic micronutrients and adipose tissue biology. Nutrients 4(11):1622–1649PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Marcotorchino J, Tourniaire F, Landrier JF (2013) Vitamin D, adipose tissue, and obesity. Horm Mol Biol Clin Investig 15(3):123–128PubMedPubMedCentralGoogle Scholar
  33. 33.
    Malmberg P, Karlsson T, Svensson H, Lonn M, Carlsson NG, Sandberg AS, Jennische E, Osmancevic A, Holmang A (2014) A new approach to measuring vitamin D in human adipose tissue using time-of-flight secondary ion mass spectrometry: a pilot study. J Photochem Photobiol B 138:295–301PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Marcotorchino J, Tourniaire F, Astier J, Karkeni E, Canault M, Amiot MJ, Bendahan D, Bernard M, Martin JC, Giannesini B et al (2014) Vitamin D protects against diet-induced obesity by enhancing fatty acid oxidation. J Nutr Biochem 25(10):1077–1083PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Domingues-Faria C, Chanet A, Salles J, Berry A, Giraudet C, Patrac V, Denis P, Bouton K, Goncalves-Mendes N, Vasson MP et al (2014) Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats. Nutr Metab (Lond) 11(1):47PubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wong KE, Kong J, Zhang W, Szeto FL, Ye H, Deb DK, Brady MJ, Li YC (2011) Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem 286(39):33804–33810PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Li J, Byrne ME, Chang E, Jiang Y, Donkin SS, Buhman KK, Burgess JR, Teegarden D (2008) 1Alpha,25-dihydroxyvitamin D hydroxylase in adipocytes. J Steroid Biochem Mol Biol 112(1–3):122–126PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nimitphong H, Holick MF, Fried SK, Lee MJ (2012) 25-Hydroxyvitamin D(3) and 1,25-dihydroxyvitamin D(3) promote the differentiation of human subcutaneous preadipocytes. PLoS ONE 7(12):e52171PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Shao B, Jiang S, Muyiduli X, Wang S, Mo M, Li M, Wang Z, Yu Y (2018) Vitamin D pathway gene polymorphisms influenced vitamin D level among pregnant women. Clin Nutr 37(6 Pt A):2230–2237PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Barry EL, Rees JR, Peacock JL, Mott LA, Amos CI, Bostick RM, Figueiredo JC, Ahnen DJ, Bresalier RS, Burke CA et al (2014) Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J Clin Endocrinol Metab 99(10):E2133–E2137PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Szili B, Szabo B, Horvath P, Bakos B, Kirschner G, Kosa JP, Toldy E, Putz Z, Lakatos P, Tabak A et al (2018) Impact of genetic influence on serum total- and free 25-hydroxyvitamin-D in humans. J Steroid Biochem Mol Biol 183:62–67PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Batai K, Murphy AB, Shah E, Ruden M, Newsome J, Agate S, Dixon MA, Chen HY, Deane LA, Hollowell CM et al (2014) Common vitamin D pathway gene variants reveal contrasting effects on serum vitamin D levels in African Americans and European Americans. Hum Genet 133(11):1395–1405PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Reimers LL, Crew KD, Bradshaw PT, Santella RM, Steck SE, Sirosh I, Terry MB, Hershman DL, Shane E, Cremers S et al (2015) Vitamin D-related gene polymorphisms, plasma 25-hydroxyvitamin D, and breast cancer risk. Cancer Causes Control 26(2):187–203PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Plum LA, DeLuca HF (2010) Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov 9(12):941–955PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Turano C, Gaucci E, Grillo C, Chichiarelli S (2011) ERp57/GRP58: a protein with multiple functions. Cell Mol Biol Lett 16(4):539–563PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Tourniaire F, Romier-Crouzet B, Lee JH, Marcotorchino J, Gouranton E, Salles J, Malezet C, Astier J, Darmon P, Blouin E et al (2013) Chemokine expression in inflamed adipose tissue is mainly mediated by NF-kappaB. PLoS ONE 8(6):e66515PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ding C, Wilding JP, Bing C (2013) 1,25-Dihydroxyvitamin D3 protects against macrophage-induced activation of NFkappaB and MAPK signalling and chemokine release in human adipocytes. PLoS ONE 8(4):e61707PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Guillot X, Semerano L, Saidenberg-Kermanac’H N, Falgarone G, Boissier MC (2010) Vitamin D and inflammation. Joint Bone Spine 77(6):552–557PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25(10):2062–2068PubMedCrossRefGoogle Scholar
  52. 52.
    Karkeni E, Marcotorchino J, Tourniaire F, Astier J, Peiretti F, Darmon P, Landrier JF (2015) Vitamin D limits chemokine expression in adipocytes and macrophage migration in vitro and in male mice. Endocrinology 156(5):1782–1793PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Epidemiology and Health StatisticsSoutheast UniversityNanjingChina
  2. 2.Department of OncologySoutheast UniversityNanjingChina
  3. 3.Department of Chronic Disease ControlJiangsu Provincial Center for Disease Control and PreventionNanjingChina

Personalised recommendations