Advertisement

Breast Cancer Research and Treatment

, Volume 178, Issue 1, pp 35–49 | Cite as

Syndecan-1 facilitates breast cancer metastasis to the brain

  • Megan R. Sayyad
  • Madhavi Puchalapalli
  • Natasha G. Vergara
  • Sierra Mosticone Wangensteen
  • Melvin Moore
  • Liang Mu
  • Chevaunne Edwards
  • Aubree Anderson
  • Stefanie Kall
  • Megan Sullivan
  • Mikhail Dozmorov
  • Jaime Singh
  • Michael O. Idowu
  • Jennifer E. KoblinskiEmail author
Preclinical study

Abstract

Purpose

Although survival rates for patients with localized breast cancer have increased, patients with metastatic breast cancer still have poor prognosis. Understanding key factors involved in promoting breast cancer metastasis is imperative for better treatments. In this study, we investigated the role of syndecan-1 (Sdc1) in breast cancer metastasis.

Methods

To assess the role of Sdc1 in breast cancer metastasis, we silenced Sdc1 expression in the triple-negative breast cancer human MDA-MB-231 cell line and overexpressed it in the mouse mammary carcinoma 4T1 cell line. Intracardiac injections were performed in an experimental mouse metastasis model using both cell lines. In vitro transwell blood–brain barrier (BBB) and brain section adhesion assays were utilized to specifically investigate how Sdc1 facilitates brain metastasis. A cytokine array was performed to evaluate differences in the breast cancer cell secretome when Sdc1 is silenced.

Results

Silencing expression of Sdc1 in breast cancer cells significantly reduced metastasis to the brain. Conversely, overexpression of Sdc1 increased metastasis to the brain. We found that silencing of Sdc1 expression had no effect on attachment of breast cancer cells to brain endothelial cells or astrocytes, but migration across the BBB was reduced as well as adhesion to the perivascular regions of the brain. Loss of Sdc1 also led to changes in breast cancer cell-secreted cytokines/chemokines, which may influence the BBB.

Conclusions

Taken together, our study demonstrates a role for Sdc1 in promoting breast cancer metastasis to the brain. These findings suggest that Sdc1 supports breast cancer cell migration across the BBB through regulation of cytokines, which may modulate the BBB. Further elucidating this mechanism will allow for the development of therapeutic strategies to combat brain metastasis.

Keywords

Breast cancer Brain metastasis Syndecan-1 Blood–brain barrier 

Abbreviations

BBB

Blood–brain barrier

Sdc1

Syndecan-1

MDA-231

MDA-MB-231

Sdc1 KD

Syndecan-1 knock-down

NS1

Non-silencing sequence

Sdc1 OE

Syndecan-1 overexpression

EV

Empty vector

HER2+

Human epidermal growth factor receptor 2 positive

TNBC

Triple-negative breast cancer

DMEM

Dulbecco’s modified Eagle’s medium

FBS

Fetal bovine serum

BME

Basement membrane extract

NSG

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ

ANOVA

Analysis of variance

iHUVECs

Immortalized human umbilical vein endothelial cells

HA

Human astrocytes

CI

Cell index

PBS

Phosphate-buffered saline

PFA

Paraformaldehyde

DAPI

4′,6-Diamidino-2-phenylindole

GFP

Green fluorescent protein

PECAM-1

Platelet endothelial cell adhesion molecule-1

CM

Conditioned medium

GRO-ɑ

Growth regulated oncogene-alpha

ICAM1

Intercellular adhesion molecule 1

IL-8

Interleukin-8

IL-6

Interleukin-6

G-CSF

Granulocyte colony-stimulating factor

GM-CSF

Granulocyte-macrophage colony-stimulating factor

CCL5

C–C motif chemokine ligand 5

ELISA

Enzyme-linked immunosorbent assay

TMA

Tissue microarray

TCGA

The cancer genome atlas

Notes

Acknowledgements

We thank Jamie Sturgill, Megan Bliss-Morrow, David Finkelstein, Emily Lanning, Kaia Schwartz, Debra Chen, Tong Zhou, and Majid Jahromi for technical assistance with experiments, Azeddine Atfi for critical review of the manuscript, and Deborah Hurtado and Nikhail Mittal (ACEA Biosciences) for their guidance with the xCELLigence System. Imaging, flow cytometry, and sequencing work were performed in part at the Northwestern University Center for Advanced Microscopy, Flow Cytometry Core, and Genomics Core generously supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center. Services and products in support of the research project were generated by the Virginia Commonwealth University School of Nursing Biobehavioral Research Laboratory and Massey Cancer Center Flow Cytometry Shared Resource, Cancer Mouse Models Core Laboratory, and Microscopy Facility, supported, in part, with funding from NIH-NCI Cancer Center Support Grant P30 CA016059. This work was supported by the American Cancer Society RSG-123275-CSM.

Author contributions

Original idea and project development-JEK; acquisition of data-MRS, MP, NGV, SMW, MM, LM, CE, AA, SK, MS, MD, JS, MOI, JEK; analysis and interpretation of data-MRS, MP, NGV, SMW, MM, LM, CE, AA, SK, MS, MD, JS, MOI, JEK; writing-MRS, SMW, JEK. All authors have reviewed and approved this manuscript.

Funding

This work was financially supported by the American Cancer Society Research Scholar Grant ACS/RSG-123275-CSM.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We declare that all work were performed in compliance with current U.S. laws and all animal experiments were conducted in accordance with a protocol approved by NU and VCU Institutional Animal Care and Use Committee. VCU IACUC Protocol AD10000943.

Supplementary material

10549_2019_5347_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)
10549_2019_5347_MOESM2_ESM.pdf (2.1 mb)
Supplementary material 2 (PDF 2190 kb)

References

  1. 1.
    American Cancer Society (2017) Breast cancer facts & figures 2017–2018. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Tsukada Y, Fouad A, Pickren JW, Lane WW (1983) Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 52:2349–2354CrossRefGoogle Scholar
  3. 3.
    Weil RJ, Palmieri DC, Bronder JL et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167:913–920.  https://doi.org/10.1016/S0002-9440(10)61180-7 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nguyen TL, Grizzle WE, Zhang K et al (2013) Syndecan-1 overexpression is associated with nonluminal subtypes and poor prognosis in advanced breast cancer. Am J Clin Pathol 140:468–474.  https://doi.org/10.1309/ajcpz1d8calhdxcj CrossRefPubMedGoogle Scholar
  5. 5.
    Rousseau C, Ruellan AL, Bernardeau K et al (2011) Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors. EJNMMI Res 1:20.  https://doi.org/10.1186/2191-219x-1-20 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hennigs A, Riedel F, Gondos A et al (2016) Prognosis of breast cancer molecular subtypes in routine clinical care: a large prospective cohort study. BMC Cancer 16:734.  https://doi.org/10.1186/s12885-016-2766-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barbareschi M, Maisonneuve P, Aldovini D et al (2003) High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 98:474–483.  https://doi.org/10.1002/cncr.11515 CrossRefPubMedGoogle Scholar
  8. 8.
    Baba F, Swartz K, van Buren R et al (2006) Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype. Breast Cancer Res Treat 98:91–98.  https://doi.org/10.1007/s10549-005-9135-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Fears CY, Woods A (2006) The role of syndecans in disease and wound healing. Matrix Biol 25:443–456.  https://doi.org/10.1016/j.matbio.2006.07.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Lendorf ME, Manon-Jensen T, Kronqvist P et al (2011) Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma. J Histochem Cytochem 59:615–629.  https://doi.org/10.1369/0022155411405057 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gharbaran R (2015) Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit Rev Oncol Hematol 94:1–17.  https://doi.org/10.1016/j.critrevonc.2014.12.003 CrossRefPubMedGoogle Scholar
  12. 12.
    Barbouri D, Afratis N, Gialeli C et al (2014) Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol 4:4.  https://doi.org/10.3389/fonc.2014.00004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ibrahim SA, Hassan H, Vilardo L et al (2013) Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS ONE 8:e85737.  https://doi.org/10.1371/journal.pone.0085737 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ibrahim SA, Yip GW, Stock C et al (2012) Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int J Cancer 131:E884–E896.  https://doi.org/10.1002/ijc.27629 CrossRefPubMedGoogle Scholar
  15. 15.
    Guo Q, Ma YX, Ma L (2015) Syndecan-1 serves as a marker for the progression of epithelial ovarian carcinoma. Eur J Gynaecol Oncol 36:506–513PubMedGoogle Scholar
  16. 16.
    Saunders S, Jalkanen M, O’Farrell S, Bernfield M (1989) Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol 108:1547–1556CrossRefGoogle Scholar
  17. 17.
    Lim HC, Multhaupt HA, Couchman JR (2015) Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 14:15.  https://doi.org/10.1186/s12943-014-0279-8 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cui X, Jing X, Yi Q et al (2017) Clinicopathological and prognostic significance of SDC1 overexpression in breast cancer. Oncotarget 8:111444–111455.  https://doi.org/10.18632/oncotarget.22820 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Soliman NA, Yussif SM, Shebl AM (2019) Syndecan-1 could be added to hormonal receptors and HER2/neu in routine assessment of invasive breast carcinoma, relation of its expression to prognosis and clinicopathological parameters. Pathol Res Pract.  https://doi.org/10.1016/j.prp.2019.02.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Akl MR, Nagpal P, Ayoub NM et al (2015) Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 6:28693–28715.  https://doi.org/10.18632/oncotarget.4981 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alexander CM, Reichsman F, Hinkes MT et al (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25:329–332.  https://doi.org/10.1038/77108 CrossRefPubMedGoogle Scholar
  22. 22.
    Yang N, Mosher R, Seo S et al (2011) Syndecan-1 in breast cancer stroma fibroblasts regulates extracellular matrix fiber organization and carcinoma cell motility. Am J Pathol 178:325–335.  https://doi.org/10.1016/j.ajpath.2010.11.039 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wade A, Robinson AE, Engler JR et al (2013) Proteoglycans and their roles in brain cancer. FEBS J 280:2399–2417.  https://doi.org/10.1111/febs.12109 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hassan H, Greve B, Pavao MS et al (2013) Syndecan-1 modulates beta-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J 280:2216–2227.  https://doi.org/10.1111/febs.12111 CrossRefPubMedGoogle Scholar
  25. 25.
    Puchalapalli M, Zeng X, Mu L et al (2016) NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (nude) mice. PLoS ONE 11:e0163521.  https://doi.org/10.1371/journal.pone.0163521 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Harrell JC, Dye WW, Allred DC et al (2006) Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66:9308–9315CrossRefGoogle Scholar
  27. 27.
    Engbring JA, Hossain R, VanOsdol SJ et al (2008) The laminin alpha-1 chain derived peptide, AG73, increases fibronectin levels in breast and melanoma cancer cells. Clin Exp Metastasis 25:241–252CrossRefGoogle Scholar
  28. 28.
    Kopp SJ, Banisadr G, Glajch K et al (2009) Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci USA 106:17916–17920.  https://doi.org/10.1073/pnas.0908892106 CrossRefPubMedGoogle Scholar
  29. 29.
    Bos PD, Zhang XH, Nadal C et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009.  https://doi.org/10.1038/nature08021 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4:e5857.  https://doi.org/10.1371/journal.pone.0005857 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mihaly Z, Kormos M, Lanczky A et al (2013) A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Res Treat 140:219–232.  https://doi.org/10.1007/s10549-013-2622-y CrossRefPubMedGoogle Scholar
  32. 32.
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  33. 33.
    Puchalapalli M, Mu L, Edwards C, et al (2019) The laminin-alpha1 chain derived peptide, AG73, binds to syndecans on MDA-231 breast cancer cells and alters filopodia formation. Anal Cell Pathol (in press)Google Scholar
  34. 34.
    Kjellén L, Oldberg A, Höök M (1980) Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem 255:10407–10413PubMedGoogle Scholar
  35. 35.
    Stepp MA, Gibson HE, Gala PH et al (2002) Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J Cell Sci 115:4517–4531CrossRefGoogle Scholar
  36. 36.
    Elenius V, Götte M, Reizes O et al (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279:41928–41935.  https://doi.org/10.1074/jbc.M404506200 CrossRefPubMedGoogle Scholar
  37. 37.
    Weksler BB, Subileau EA, Perrière N et al (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874.  https://doi.org/10.1096/fj.04-3458fje CrossRefPubMedGoogle Scholar
  38. 38.
    Tominaga N, Kosaka N, Ono M et al (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6:6716.  https://doi.org/10.1038/ncomms7716 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhou W, Fong MY, Min Y et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515.  https://doi.org/10.1016/j.ccr.2014.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Al-Obaidi MMJ, Desa MNM (2018) Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial–host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol 38:1349–1368.  https://doi.org/10.1007/s10571-018-0609-2 CrossRefPubMedGoogle Scholar
  41. 41.
    Rodriguez PL, Jiang S, Fu Y et al (2014) The proinflammatory peptide substance P promotes blood–brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int J Cancer 134:1034–1044.  https://doi.org/10.1002/ijc.28433 CrossRefPubMedGoogle Scholar
  42. 42.
    Banks WA, Kastin AJ (1996) Reversible association of the cytokines MIP-1 alpha and MIP-1 beta with the endothelia of the blood–brain barrier. Neurosci Lett 205:202–206CrossRefGoogle Scholar
  43. 43.
    Lv S, Song HL, Zhou Y et al (2010) Tumour necrosis factor-alpha affects blood–brain barrier permeability and tight junction-associated occludin in acute liver failure. Liver Int 30:1198–1210.  https://doi.org/10.1111/j.1478-3231.2010.02211.x CrossRefPubMedGoogle Scholar
  44. 44.
    Takeshita Y, Ransohoff RM (2012) Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models. Immunol Rev 248:228–239.  https://doi.org/10.1111/j.1600-065X.2012.01127.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Quandt J, Dorovini-Zis K (2004) The beta chemokines CCL4 and CCL5 enhance adhesion of specific CD4+T cell subsets to human brain endothelial cells. J Neuropathol Exp Neurol 63(4):350–362CrossRefGoogle Scholar
  46. 46.
    Terao S, Yilmaz G, Stokes KY et al (2008) Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke 39:2560–2570.  https://doi.org/10.1161/STROKEAHA.107.513150 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vogel DY, Kooij G, Heijnen PD et al (2015) GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur J Immunol 45:1808–1819.  https://doi.org/10.1002/eji.201444960 CrossRefPubMedGoogle Scholar
  48. 48.
    Dietrich J-B (2002) The adhesion molecule ICAM-1 and its regulation in relation with the blood–brain barrier. J Neuroimmunol 128:58–68.  https://doi.org/10.1016/S0165-5728(02)00114-5 CrossRefPubMedGoogle Scholar
  49. 49.
    Marshall LJ, Ramdin LS, Brooks T et al (2003) Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. J Immunol 171:2057–2065CrossRefGoogle Scholar
  50. 50.
    Götte M, Echtermeyer F (2003) Syndecan-1 as a regulator of chemokine function. Sci World J 3:1327–1331.  https://doi.org/10.1100/tsw.2003.118 CrossRefGoogle Scholar
  51. 51.
    Gril B, Paranjape AN, Woditschka S et al (2018) Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat Commun 9:2705.  https://doi.org/10.1038/s41467-018-05030-w CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lanczky A, Nagy A, Bottai G et al (2016) miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat 160:439–446.  https://doi.org/10.1007/s10549-016-4013-7 CrossRefPubMedGoogle Scholar
  53. 53.
    Bayer-Garner IB, Sanderson RD, Dhodapkar MV et al (2001) Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol 14:1052–1058.  https://doi.org/10.1038/modpathol.3880435 CrossRefPubMedGoogle Scholar
  54. 54.
    Lamorte S, Ferrero S, Aschero S et al (2011) Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells. Leukemia 26:1081CrossRefGoogle Scholar
  55. 55.
    Derksen PW, Keehnen RM, Evers LM et al (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410CrossRefGoogle Scholar
  56. 56.
    Joensuu H, Anttonen A, Eriksson M et al (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62:5210–5217PubMedGoogle Scholar
  57. 57.
    Maeda T, Alexander CM, Friedl A (2004) Induction of syndecan-1 expression in stromal fibroblasts promotes proliferation of human breast cancer cells. Cancer Res 64:612–621CrossRefGoogle Scholar
  58. 58.
    Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25:1408–1412.  https://doi.org/10.1038/sj.onc.1209168 CrossRefPubMedGoogle Scholar
  59. 59.
    Beauvais DM, Ell BJ, McWhorter AR, Rapraeger AC (2009) Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 206:691–705.  https://doi.org/10.1084/jem.20081278 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chute C, Yang X, Meyer K et al (2018) Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res 20:66.  https://doi.org/10.1186/s13058-018-0995-x CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53.  https://doi.org/10.1038/nrn1824 CrossRefPubMedGoogle Scholar
  62. 62.
    Yonemori K, Tsuta K, Ono M et al (2010) Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer 116:302–308.  https://doi.org/10.1002/cncr.24735 CrossRefPubMedGoogle Scholar
  63. 63.
    Arshad F, Wang L, Sy C et al (2010) Blood–brain barrier integrity and breast cancer metastasis to the brain. Pathol Res Int 2011:920509.  https://doi.org/10.4061/2011/920509 CrossRefGoogle Scholar
  64. 64.
    Segaliny AI, Brion R, Mortier E et al (2015) Syndecan-1 regulates the biological activities of interleukin-34. Biochim Biophys Acta 1853:1010–1021.  https://doi.org/10.1016/j.bbamcr.2015.01.023 CrossRefPubMedGoogle Scholar
  65. 65.
    Sneed TB, Stanley DJ, Young LA, Sanderson RD (1994) Interleukin-6 regulates expression of the syndecan-1 proteoglycan on B lymphoid cells. Cell Immunol 153:456–467.  https://doi.org/10.1006/cimm.1994.1042 CrossRefPubMedGoogle Scholar
  66. 66.
    Brimo F, Vollmer RT, Friszt M et al (2010) Syndecan-1 expression in prostate cancer and its value as biomarker for disease progression. BJU Int 106:418–423.  https://doi.org/10.1111/j.1464-410X.2009.09099.x CrossRefPubMedGoogle Scholar
  67. 67.
    de Oliveira Barros EG, Palumbo A, Mello PLP et al (2014) The reciprocal interactions between astrocytes and prostate cancer cells represent an early event associated with brain metastasis. Clin Exp Metastasis 31:461–474.  https://doi.org/10.1007/s10585-014-9640-y CrossRefPubMedGoogle Scholar
  68. 68.
    Tremont-Lukats IW, Bobustuc G, Lagos GK et al (2003) Brain metastasis from prostate carcinoma. Cancer 98:363–368.  https://doi.org/10.1002/cncr.11522 CrossRefPubMedGoogle Scholar
  69. 69.
    Shah L, Walter KL, Borczuk AC et al (2004) Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma. Cancer 101:1632–1638.  https://doi.org/10.1002/cncr.20542 CrossRefPubMedGoogle Scholar
  70. 70.
    Anttonen A, Heikkilä P, Kajanti M et al (2001) High syndecan-1 expression is associated with favourable outcome in squamous cell lung carcinoma treated with radical surgery. Lung Cancer 32:297–305.  https://doi.org/10.1016/S0169-5002(00)00230-0 CrossRefPubMedGoogle Scholar
  71. 71.
    Anttonen A, Leppä S, Ruotsalainen T et al (2003) Pretreatment serum syndecan-1 levels and outcome in small cell lung cancer patients treated with platinum-based chemotherapy. Lung Cancer 41:171–177.  https://doi.org/10.1016/S0169-5002(03)00196-X CrossRefPubMedGoogle Scholar
  72. 72.
    Toyoshima E, Ohsaki Y, Nishigaki Y et al (2001) Expression of syndecan-1 is common in human lung cancers independent of expression of epidermal growth factor receptor. Lung Cancer 31:193–202.  https://doi.org/10.1016/S0169-5002(00)00184-7 CrossRefPubMedGoogle Scholar
  73. 73.
    Ridgway LD, Wetzel MD, Ngo JA et al (2012) Heparanase-induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells. Mol Cancer Res 10:689–702.  https://doi.org/10.1158/1541-7786.mcr-11-0534 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Dedes PG, Gialeli C, Tsonis AI et al (2012) Expression of matrix macromolecules and functional properties of breast cancer cells are modulated by the bisphosphonate zoledronic acid. Biochim Biophys Acta BBA 1820:1926–1939.  https://doi.org/10.1016/j.bbagen.2012.07.013 CrossRefPubMedGoogle Scholar
  75. 75.
    Schönfeld K, Herbener P, Zuber C et al (2018) Activity of indatuximab ravtansine against triple-negative breast cancer in preclinical tumor models. Pharm Res 35:118.  https://doi.org/10.1007/s11095-018-2400-y CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Joice SL, Mydeen F, Couraud P-O et al (2009) Modulation of blood–brain barrier permeability by neutrophils: in vitro and in vivo studies. Brain Res 1298:13–23.  https://doi.org/10.1016/j.brainres.2009.08.076 CrossRefPubMedGoogle Scholar
  77. 77.
    Üllen A, Singewald E, Konya V et al (2013) Myeloperoxidase-derived oxidants induce blood–brain barrier dysfunction in vitro and in vivo. PLoS ONE 8:e64034.  https://doi.org/10.1371/journal.pone.0064034 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Koblinski JE, Kaplan-Singer BR, VanOsdol SJ et al (2005) Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Res 65:7370–7377.  https://doi.org/10.1158/0008-5472.can-05-0807 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Megan R. Sayyad
    • 1
  • Madhavi Puchalapalli
    • 1
    • 3
  • Natasha G. Vergara
    • 3
    • 4
  • Sierra Mosticone Wangensteen
    • 1
  • Melvin Moore
    • 3
    • 4
  • Liang Mu
    • 3
  • Chevaunne Edwards
    • 3
  • Aubree Anderson
    • 3
  • Stefanie Kall
    • 3
    • 4
  • Megan Sullivan
    • 3
  • Mikhail Dozmorov
    • 2
  • Jaime Singh
    • 1
  • Michael O. Idowu
    • 1
  • Jennifer E. Koblinski
    • 1
    • 3
    • 5
    Email author
  1. 1.Department of Pathology, School of Medicine, Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Biostatistics, School of Medicine, Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Pathology, Women’s Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer InstituteNorthwestern UniversityChicagoUSA
  4. 4.McCormick School of Engineering, Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  5. 5.Department of Pathology, School of MedicineVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations