Advertisement

Intrinsic brain activity changes associated with adjuvant chemotherapy in older women with breast cancer: a pilot longitudinal study

  • Bihong T. ChenEmail author
  • Taihao Jin
  • Sunita K. Patel
  • Ningrong Ye
  • Huiyan Ma
  • Chi Wah Wong
  • Russell C. Rockne
  • James C. Root
  • Andrew J. Saykin
  • Tim A. Ahles
  • Andrei I. Holodny
  • Neal Prakash
  • Joanne Mortimer
  • James Waisman
  • Yuan Yuan
  • Daneng Li
  • Mina S. Sedrak
  • Jessica Vazquez
  • Vani Katheria
  • William Dale
Clinical trial

Abstract

Purpose

Older cancer patients are at increased risk of cancer-related cognitive impairment. The purpose of this study was to assess the alterations in intrinsic brain activity associated with adjuvant chemotherapy in older women with breast cancer.

Methods

Chemotherapy treatment (CT) group included sixteen women aged ≥ 60 years (range 60–82 years) with stage I–III breast cancers, who underwent both resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing with NIH Toolbox for Cognition before adjuvant chemotherapy, at time point 1 (TP1), and again within 1 month after completing chemotherapy, at time point 2 (TP2). Fourteen age- and sex-matched healthy controls (HC) underwent the same assessments at matched intervals. Three voxel-wise rs-fMRI parameters: amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity, were computed at each time point. The changes in rs-fMRI parameters from TP1 to TP2 for each group, the group differences in changes (the CT group vs. the HC group), and the group difference in the baseline rs-fMRI parameters were assessed. In addition, correlative analysis between the rs-fMRI parameters and neuropsychological testing scores was also performed.

Results

In the CT group, one brain region, which included parts of the bilateral subcallosal gyri and right anterior cingulate gyrus, displayed increased ALFF from TP1 to TP2 (cluster p-corrected = 0.024); another brain region in the left precuneus displayed decreased fALFF from TP1 to TP2 (cluster level p-corrected = 0.025). No significant changes in the rs-fMRI parameters from TP1 to TP2 were observed in the HC group. Although ALFF and fALFF alterations were observed only in the CT group, none of the between-group differences in rs-fMRI parameter changes reached statistical significance.

Conclusions

Our study results of ALFF and fALFF alterations in the chemotherapy-treated women suggest that adjuvant chemotherapy may affect intrinsic brain activity in older women with breast cancer.

Notes

Acknowledgements

This study was funded by National Institutes of Health/National Institute on Aging Grants R03 AG045090-02 (BTC) and R01 AG037037-01A1 (Arti Hurria). Nancy Linford, PhD provided editing assistance.

Author contributions

BTC, SKP, and Arti Hurria designed and conducted the study. BTC prepared the manuscript. TJ performed rs-fMRI data analysis and correlative analysis. BTC, SKP, TJ, NY, HM, CWW, RR, JR, AIH, AS, TA, NP, WD contributed to interpretation and description of the data. TJ and HM performed statistical analysis. JM, JW, YY, MS, DL, MSS, JV, and VK contributed to study accrual and procedures. All authors approved the final manuscript. We dedicate this manuscript to the memory of Dr. Arti Hurria whose vision and support made this work possible.

Compliance with ethical standards

Conflict of interest

JM reports being a consultant/advisory role in the following entities: Puma and Pfizer. YY reports research grants from and being a consultant with an advisory role in the following entities: Puma, Novartis, Genentech, Merck, GTx, Pfizer, and Immunemedics, outside the submitted work. All other authors declare no competing interests.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the Institutional Review Board of City of Hope and with the 1964 Helsinki Declaration and its later amendments, as well as all local and national laws. This study is registered on ClinicalTrials.gov (NCT01992432).

Informed consent

Informed consent was obtained from all study participants in the study.

References

  1. 1.
    Hayat MJ, Howlader N, Reichman ME, Edwards BK (2007) Cancer statistics, trends, and multiple primary cancer analyses from the surveillance, epidemiology, and end results (SEER) program. Oncologist 12(1):20–37.  https://doi.org/10.1634/theoncologist.12-1-20 CrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67(1):7–30.  https://doi.org/10.3322/caac.21387 CrossRefGoogle Scholar
  3. 3.
    Hurria A, Somlo G, Ahles T (2007) Renaming “chemobrain”. Cancer Invest 25(6):373–377.  https://doi.org/10.1080/07357900701506672 CrossRefGoogle Scholar
  4. 4.
    Dutta V (2011) Chemotherapy, neurotoxicity, and cognitive changes in breast cancer. J Cancer Res Ther 7(3):264–269.  https://doi.org/10.4103/0973-1482.87008 CrossRefGoogle Scholar
  5. 5.
    Wefel JS, Schagen SB (2012) Chemotherapy-related cognitive dysfunction. Curr Neurol Neurosci Rep 12(3):267–275.  https://doi.org/10.1007/s11910-012-0264-9 CrossRefGoogle Scholar
  6. 6.
    Fried TR, Bradley EH, Towle VR, Allore H (2002) Understanding the treatment preferences of seriously ill patients. N Engl J Med 346(14):1061–1066.  https://doi.org/10.1056/NEJMsa012528 CrossRefGoogle Scholar
  7. 7.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefGoogle Scholar
  8. 8.
    Bruno J, Hosseini SM, Kesler S (2012) Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiol Dis 48(3):329–338.  https://doi.org/10.1016/j.nbd.2012.07.009 CrossRefGoogle Scholar
  9. 9.
    de Ruiter MB, Schagen SB (2013) Functional MRI studies in non-CNS cancers. Brain Imaging Behav 7(4):388–408.  https://doi.org/10.1007/s11682-013-9249-9 CrossRefGoogle Scholar
  10. 10.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711.  https://doi.org/10.1038/nrn2201 CrossRefGoogle Scholar
  11. 11.
    Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF, Zang YF (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141.  https://doi.org/10.1016/j.jneumeth.2008.04.012 CrossRefGoogle Scholar
  12. 12.
    Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400.  https://doi.org/10.1016/j.neuroimage.2003.12.030 CrossRefGoogle Scholar
  13. 13.
    Zuo XN, Xu T, Jiang L, Yang Z, Cao XY, He Y, Zang YF, Castellanos FX, Milham MP (2013) Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage 65:374–386.  https://doi.org/10.1016/j.neuroimage.2012.10.017 CrossRefGoogle Scholar
  14. 14.
    Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Kotozaki Y, Nakagawa S, Makoto Miyauchi C, Sassa Y, Kawashima R (2017) Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training. Sci Rep 7(1):1470.  https://doi.org/10.1038/s41598-017-01460-6 CrossRefGoogle Scholar
  15. 15.
    Jin C, Guan M, Dong M, Wu J, He Z, Chen X, Shi D, Ren J, Shi G, Zhang X (2017) Aberrant baseline brain activity in psychogenic erectile dysfunction patients: a resting state fMRI study. Brain Imaging Behav.  https://doi.org/10.1007/s11682-017-9805-9 Google Scholar
  16. 16.
    Liu G, Dang C, Peng K, Xie C, Chen H, Xing S, Chen X, Zeng J (2015) Increased spontaneous neuronal activity in structurally damaged cortex is correlated with early motor recovery in patients with subcortical infarction. Eur J Neurol 22(12):1540–1547.  https://doi.org/10.1111/ene.12780 CrossRefGoogle Scholar
  17. 17.
    Wu J, Qian Z, Tao L, Yin J, Ding S, Zhang Y, Yu Z (2015) Resting state fMRI feature-based cerebral glioma grading by support vector machine. Int J Comput Assist Radiol Surg 10(7):1167–1174.  https://doi.org/10.1007/s11548-014-1111-z CrossRefGoogle Scholar
  18. 18.
    Kim HG, Shin NY, Bak Y, Kim KR, Jung YC, Han K, Lee SK, Lim SM (2017) Altered intrinsic brain activity after chemotherapy in patients with gastric cancer: a preliminary study. Eur Radiol 27(7):2679–2688.  https://doi.org/10.1007/s00330-016-4578-x CrossRefGoogle Scholar
  19. 19.
    Mo C, Lin H, Fu F, Lin L, Zhang J, Huang M, Wang C, Xue Y, Duan Q, Lin W, Chen X (2017) Chemotherapy-induced changes of cerebral activity in resting-state functional magnetic resonance imaging and cerebral white matter in diffusion tensor imaging. Oncotarget 8(46):81273–81284.  https://doi.org/10.18632/oncotarget.18111 CrossRefGoogle Scholar
  20. 20.
    Chen BT, Sethi SK, Jin T, Patel SK, Ye N, Sun CL, Rockne RC, Haacke EM, Root JC, Saykin AJ, Ahles TA, Holodny AI, Prakash N, Mortimer J, Waisman J, Yuan Y, Somlo G, Li D, Yang R, Tan H, Katheria V, Morrison R, Hurria A (2018) Assessing brain volume changes in older women with breast cancer receiving adjuvant chemotherapy: a brain magnetic resonance imaging pilot study. Breast Cancer Res 20(1):38.  https://doi.org/10.1186/s13058-018-0965-3 CrossRefGoogle Scholar
  21. 21.
    Chen BT, Jin T, Patel SK, Ye N, Sun CL, Ma H, Rockne RC, Root JC, Saykin AJ, Ahles TA, Holodny AI, Prakash N, Mortimer J, Waisman J, Yuan Y, Li D, Somlo G, Vazquez J, Levi A, Tan H, Yang R, Katheria V, Hurria A (2018) Gray matter density reduction associated with adjuvant chemotherapy in older women with breast cancer. Breast Cancer Res Treat 172(2):363–370.  https://doi.org/10.1007/s10549-018-4911-y CrossRefGoogle Scholar
  22. 22.
    Chen BT, Ghassaban K, Jin T, Patel SK, Ye N, Sun CL, Kim H, Rockne RC, Mark Haacke E, Root JC, Saykin AJ, Ahles TA, Holodny AI, Prakash N, Mortimer J, Waisman J, Yuan Y, Somlo G, Li D, Yang R, Tan H, Katheria V, Morrison R, Hurria A (2018) Subcortical brain iron deposition and cognitive performance in older women with breast cancer receiving adjuvant chemotherapy: a pilot MRI study. Magn Reson Imaging 54:218–224.  https://doi.org/10.1016/j.mri.2018.07.016 CrossRefGoogle Scholar
  23. 23.
    Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141.  https://doi.org/10.1089/brain.2012.0073 CrossRefGoogle Scholar
  24. 24.
    Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6(9):e25031.  https://doi.org/10.1371/journal.pone.0025031 CrossRefGoogle Scholar
  25. 25.
    Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Bauer PJ, Carlozzi NE, Slotkin J, Blitz D, Wallner-Allen K, Fox NA, Beaumont JL, Mungas D, Nowinski CJ, Richler J, Deocampo JA, Anderson JE, Manly JJ, Borosh B, Havlik R, Conway K, Edwards E, Freund L, King JW, Moy C, Witt E, Gershon RC (2013) Cognition assessment using the NIH toolbox. Neurology 80(11 Suppl 3):S54–64.  https://doi.org/10.1212/WNL.0b013e3182872ded CrossRefGoogle Scholar
  26. 26.
    Apps MA, Rushworth MF, Chang SW (2016) The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 90(4):692–707.  https://doi.org/10.1016/j.neuron.2016.04.018 CrossRefGoogle Scholar
  27. 27.
    Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12(2):241–268.  https://doi.org/10.3758/s13415-011-0083-5 CrossRefGoogle Scholar
  28. 28.
    McDonald BC, Conroy SK, Smith DJ, West JD, Saykin AJ (2012) Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain Behav Immun.  https://doi.org/10.1016/j.bbi.2012.05.007 Google Scholar
  29. 29.
    Simo M, Rifa-Ros X, Rodriguez-Fornells A, Bruna J (2013) Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev 37(8):1311–1321.  https://doi.org/10.1016/j.neubiorev.2013.04.015 CrossRefGoogle Scholar
  30. 30.
    McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ (2010) Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res Treat 123(3):819–828.  https://doi.org/10.1007/s10549-010-1088-4 CrossRefGoogle Scholar
  31. 31.
    McDonald BC, Conroy SK, Smith DJ, West JD, Saykin AJ (2013) Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain Behav Immun 30(Suppl):S117–S125.  https://doi.org/10.1016/j.bbi.2012.05.007 CrossRefGoogle Scholar
  32. 32.
    Lepage C, Smith AM, Moreau J, Barlow-Krelina E, Wallis N, Collins B, MacKenzie J, Scherling C (2014) A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. Springerplus 3:444.  https://doi.org/10.1186/2193-1801-3-444 CrossRefGoogle Scholar
  33. 33.
    Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583.  https://doi.org/10.1093/brain/awl004 CrossRefGoogle Scholar
  34. 34.
    Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of the default-mode network. J Neurosci 34(3):932–940.  https://doi.org/10.1523/JNEUROSCI.4227-13.2014 CrossRefGoogle Scholar
  35. 35.
    Kesler SR (2014) Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging 35(Suppl 2):S11–S19.  https://doi.org/10.1016/j.neurobiolaging.2014.03.036 CrossRefGoogle Scholar
  36. 36.
    Kesler SR, Wefel JS, Hosseini SM, Cheung M, Watson CL, Hoeft F (2013) Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proc Natl Acad Sci USA 110(28):11600–11605.  https://doi.org/10.1073/pnas.1214551110 CrossRefGoogle Scholar
  37. 37.
    Cimprich B, Reuter-Lorenz P, Nelson J, Clark PM, Therrien B, Normolle D, Berman MG, Hayes DF, Noll DC, Peltier S, Welsh RC (2010) Prechemotherapy alterations in brain function in women with breast cancer. J Clin Exp Neuropsychol 32(3):324–331.  https://doi.org/10.1080/13803390903032537 CrossRefGoogle Scholar
  38. 38.
    Carlozzi NE, Tulsky DS, Chiaravalloti ND, Beaumont JL, Weintraub S, Conway K, Gershon RC (2014) NIH toolbox cognitive battery (NIHTB-CB): the NIHTB pattern comparison processing speed test. J Int Neuropsychol Soc 20(6):630–641.  https://doi.org/10.1017/S1355617714000319 CrossRefGoogle Scholar
  39. 39.
    Kvale EA, Clay OJ, Ross-Meadows LA, McGee JS, Edwards JD, Unverzagt FW, Ritchie CS, Ball KK (2010) Cognitive speed of processing and functional declines in older cancer survivors: an analysis of data from the ACTIVE trial. Eur J Cancer Care (Engl) 19(1):110–117.  https://doi.org/10.1111/j.1365-2354.2008.01018.x CrossRefGoogle Scholar
  40. 40.
    Cerulla N, Arcusa A, Navarro JB, de la Osa N, Garolera M, Enero C, Chico G, Fernandez-Morales L (2018) Cognitive impairment following chemotherapy for breast cancer: the impact of practice effect on results. J Clin Exp Neuropsychol 41:290–299.  https://doi.org/10.1080/13803395.2018.1546381 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bihong T. Chen
    • 1
    • 2
    Email author
  • Taihao Jin
    • 1
  • Sunita K. Patel
    • 3
  • Ningrong Ye
    • 1
  • Huiyan Ma
    • 2
  • Chi Wah Wong
    • 4
  • Russell C. Rockne
    • 5
  • James C. Root
    • 6
  • Andrew J. Saykin
    • 7
  • Tim A. Ahles
    • 6
  • Andrei I. Holodny
    • 8
  • Neal Prakash
    • 9
  • Joanne Mortimer
    • 10
  • James Waisman
    • 10
  • Yuan Yuan
    • 10
  • Daneng Li
    • 10
  • Mina S. Sedrak
    • 10
  • Jessica Vazquez
    • 2
  • Vani Katheria
    • 2
  • William Dale
    • 2
    • 11
  1. 1.Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteUSA
  2. 2.Center for Cancer and AgingCity of Hope National Medical CenterDuarteUSA
  3. 3.Department of Population ScienceCity of Hope National Medical CenterDuarteUSA
  4. 4.Center for InformaticsCity of Hope National Medical CenterDuarteUSA
  5. 5.Division of Mathematical OncologyCity of Hope National Medical CenterDuarteUSA
  6. 6.Neurocognitive Research LabMemorial Sloan Kettering Cancer CenterNew YorkUSA
  7. 7.Center for NeuroimagingIndiana University School of MedicineIndianapolisUSA
  8. 8.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  9. 9.Division of NeurologyCity of Hope National Medical CenterDuarteUSA
  10. 10.Department of Medical OncologyCity of Hope National Medical CenterDuarteUSA
  11. 11.Department of Supportive Care MedicineCity of Hope National Medical CenterDuarteUSA

Personalised recommendations