Breast Cancer Research and Treatment

, Volume 174, Issue 1, pp 129–141 | Cite as

Plasma exosomes stimulate breast cancer metastasis through surface interactions and activation of FAK signaling

  • Tatiana Shtam
  • Stanislav Naryzhny
  • Roman Samsonov
  • David Karasik
  • Igor Mizgirev
  • Artur Kopylov
  • Elena Petrenko
  • Yana Zabrodskaya
  • Roman Kamyshinsky
  • Daniil Nikitin
  • Maxim Sorokin
  • Anton Buzdin
  • Hava Gil-HennEmail author
  • Anastasia MalekEmail author
Preclinical study



The interaction between malignant cells and surrounding healthy tissues is a critical factor in the metastatic progression of breast cancer (BC). Extracellular vesicles, especially exosomes, are known to be involved in inter-cellular communication during cancer progression. In the study presented herein, we aimed to evaluate the role of circulating plasma exosomes in the metastatic dissemination of BC and to investigate the underlying molecular mechanisms of this phenomenon.


Exosomes isolated from plasma of healthy female donors were applied in various concentrations into the medium of MDA-MB-231 and MCF-7 cell lines. Motility and invasive properties of BC cells were examined by random migration and Transwell invasion assays, and the effect of plasma exosomes on the metastatic dissemination of BC cells was demonstrated in an in vivo zebrafish model. To reveal the molecular mechanism of interaction between plasma exosomes and BC cells, a comparison between un-treated and enzymatically modified exosomes was performed, followed by mass spectrometry, gene ontology, and pathway analysis.


Plasma exosomes stimulated the adhesive properties, two-dimensional random migration, and transwell invasion of BC cells in vitro as well as their in vivo metastatic dissemination in a dose-dependent manner. This stimulatory effect was mediated by interactions of surface exosome proteins with BC cells and consequent activation of focal adhesion kinase (FAK) signaling in the tumor cells.


Plasma exosomes have a potency to stimulate the metastasis-promoting properties of BC cells. This pro-metastatic property of normal plasma exosomes may have impact on the course of the disease and on its prognosis.


Breast cancer Metastasis Exosomes Surface interaction Mass spectrometry FAK signaling 



This study was supported by RFBR (grant numbers 15-54-12380 and 18-015-00289), by Russian Science Foundation (grant number 17-14-01416), by the Ministry of Education and Science of the Russian Federation (ID RFMEFI62117 × 0017) (to Anastasia Malek), as well as by the Israel Cancer Association and Estee Lauder Companies (grant number 20180089), by the Israel Cancer Research Foundation (grant number 17-902-AG), and by the Israel Science Foundation (grant number 1462/17) (to Hava Gil-Henn).

Compliance with ethical standards

Conflict of interest

The authors declared no conflicts of interest.

Ethical approval

The design of study has been approved by Ethical Committee of N.N. Petrov National Medical Research Center of Oncology. All procedures were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10549_2018_5043_MOESM1_ESM.xlsx (181 kb)
Supplementary material 1 (XLSX 180 KB)
10549_2018_5043_MOESM2_ESM.tif (27.6 mb)
Supplementary material 2 (TIF 28278 KB)


  1. 1.
    Menard JA, Cerezo-Magana M, Belting M (2018) Functional role of extracellular vesicles and lipoproteins in the tumour microenvironment. Philos Trans R Soc Lond Ser 373 (1737).
  2. 2.
    Green TM, Alpaugh ML, Barsky SH, Rappa G, Lorico A (2015) Breast cancer-derived extracellular vesicles: characterization and contribution to the metastatic phenotype. BioMed Res Int 2015:634865. Google Scholar
  3. 3.
    Harris DA, Patel SH, Gucek M, Hendrix A, Westbroek W, Taraska JW (2015) Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS ONE 10(3):e0117495. CrossRefGoogle Scholar
  4. 4.
    Luga V, Wrana JL (2013) Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res 73(23):6843–6847. CrossRefGoogle Scholar
  5. 5.
    Gernapudi R, Yao Y, Zhang Y, Wolfson B, Roy S, Duru N, Eades G, Yang P, Zhou Q (2015) Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat 150(3):685–695. CrossRefGoogle Scholar
  6. 6.
    Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 383(1–2):13–20. CrossRefGoogle Scholar
  7. 7.
    Jang JY, Lee JK, Jeon YK, Kim CW (2013) Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer 13:421. CrossRefGoogle Scholar
  8. 8.
    Chow A, Zhou W, Liu L, Fong MY, Champer J, Van Haute D, Chin AR, Ren X, Gugiu BG, Meng Z, Huang W, Ngo V, Kortylewski M, Wang SE (2014) Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep 4:5750. CrossRefGoogle Scholar
  9. 9.
    Whiteside TL (2017) Exosomes in cancer: another mechanism of tumor-induced immune suppression. Adv Exp Med Biol 1036:81–89. CrossRefGoogle Scholar
  10. 10.
    Rana S, Malinowska K, Zoller M (2013) Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15(3):281–295CrossRefGoogle Scholar
  11. 11.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, Garcia-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. CrossRefGoogle Scholar
  12. 12.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. CrossRefGoogle Scholar
  13. 13.
    Ochieng J, Pratap S, Khatua AK, Sakwe AM (2009) Anchorage-independent growth of breast carcinoma cells is mediated by serum exosomes. Exp Cell Res 315(11):1875–1888. CrossRefGoogle Scholar
  14. 14.
    Almendros I, Khalyfa A, Trzepizur W, Gileles-Hillel A, Huang L, Akbarpour M, Andrade J, Farre R, Gozal D (2016) Tumor cell malignant properties are enhanced by circulating exosomes in sleep apnea. Chest 150(5):1030–1041. CrossRefGoogle Scholar
  15. 15.
    Khalyfa A, Almendros I, Gileles-Hillel A, Akbarpour M, Trzepizur W, Mokhlesi B, Huang L, Andrade J, Farre R, Gozal D (2016) Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation. Oncotarget 7(34):54676–54690. CrossRefGoogle Scholar
  16. 16.
    Genna A, Lapetina S, Lukic N, Twafra S, Meirson T, Sharma VP, Condeelis JS, Gil-Henn H (2018) Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol 217(1):375–395. CrossRefGoogle Scholar
  17. 17.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3: 22. Google Scholar
  18. 18.
    Samsonov R, Burdakov V, Shtam T, Radzhabova Z, Vasilyev D, Tsyrlina E, Titov S, Ivanov M, Berstein L, Filatov M, Kolesnikov N, Gil-Henn H, Malek A (2016) Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumour Biol 37(9):12011–12021. CrossRefGoogle Scholar
  19. 19.
    Shtam T, Kovalev R, Varfolomeeva E, Makarov E, Kil Y, Filatov M (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88. CrossRefGoogle Scholar
  20. 20.
    Alamri Y, Vogel R, MacAskill M, Anderson T (2016) Plasma exosome concentration may correlate with cognitive impairment in Parkinson’s disease. Alzheimer’s Dement 4:107–108. Google Scholar
  21. 21.
    Shtam T, Samsonov R, Kamyshinsky R, Pantina R, Verlov N, Vasiliev A, Konevega A, Malek A (2017) Exosomes: Some approaches to cancer diagnosis and therapy. AIP Conference Proceedings 1882 (1), 020066Google Scholar
  22. 22.
    Shtam T, Samsonov R, Volnitskiy A, Kamyshinsky R, Verlov N, Kniazeva M, Korobkina E, Orehov A, Vasiliev A, Konevega A, Malek A (2018) Isolation of extracellular micro-vesicles from cell culture medium: comparative evaluation of methods. Biomeditsinskaia Khimiia 64(1):23–30. CrossRefGoogle Scholar
  23. 23.
    Egorov VV, Lebedev DV, Shaldzhyan AA, Sirotkin AK, Gorshkov AN, Mirgorodskaya OA, Grudinina NA, Vasin AV, Shavlovsky MM (2014) A conservative mutant of a proteolytic fragment produced during fibril formation enhances fibrillogenesis. Prion 8(5):369–373. CrossRefGoogle Scholar
  24. 24.
    Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10(1):181–188Google Scholar
  25. 25.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. CrossRefGoogle Scholar
  26. 26.
    Naryzhny S, Zgoda V, Kopylov A, Petrenko E, Kleist O, Archakov A (2017) Variety and dynamics of proteoforms in the human proteome: aspects of markers for hepatocellular carcinoma. Proteomes 5 (4).
  27. 27.
    Naryzhny S, Maynskova M, Zgoda V, Archakov А (2017) Zipf’s law in proteomics. J Proteom Bioinform 10:79–84CrossRefGoogle Scholar
  28. 28.
    Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mole Cell Proteom 4(9):1265–1272. CrossRefGoogle Scholar
  29. 29.
    Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genom 9:102. CrossRefGoogle Scholar
  30. 30.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. CrossRefGoogle Scholar
  31. 31.
    Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. CrossRefGoogle Scholar
  32. 32.
    Nakaya A, Katayama T, Itoh M, Hiranuka K, Kawashima S, Moriya Y, Okuda S, Tanaka M, Tokimatsu T, Yamanishi Y, Yoshizawa AC, Kanehisa M, Goto S (2013) KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res 41(Database issue):D353–D357. Google Scholar
  33. 33.
    Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res 37: D674-D679. CrossRefGoogle Scholar
  34. 34.
    Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477. CrossRefGoogle Scholar
  35. 35.
    Malek A, Catapano CV, Czubayko F, Aigner A (2010) A sensitive polymerase chain reaction-based method for detection and quantification of metastasis in human xenograft mouse models. Clin Exp Metastasis 27(4):261–271. CrossRefGoogle Scholar
  36. 36.
    The Transwell Migration Assay (2017) J Vis ExpGoogle Scholar
  37. 37.
    White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189. CrossRefGoogle Scholar
  38. 38.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. CrossRefGoogle Scholar
  39. 39.
    Shtam T, Naryzhny S, Kopylov A, Petrenko E, Samsonov R, Kamyshinsky R, Zabrodskaya Y, Nikitin D, Sorokin M, Buzdin A, Malek A (2018) Functional properties of circulating exosomes mediated by surface-attached plasma proteins. J Hematol 7(4):149–153CrossRefGoogle Scholar
  40. 40.
    Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD (2016) Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem 291(4):1652–1663. CrossRefGoogle Scholar
  41. 41.
    Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM (2015) Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 6:7164. CrossRefGoogle Scholar
  42. 42.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556. CrossRefGoogle Scholar
  43. 43.
    Lakkaraju A, Rodriguez-Boulan E (2007) Cell biology: caught in the traffic. Nature 448(7151):266–267. CrossRefGoogle Scholar
  44. 44.
    Mu W, Rana S, Zoller M (2013) Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15(8):875–887CrossRefGoogle Scholar
  45. 45.
    Koliha N, Heider U, Ozimkowski T, Wiemann M, Bosio A, Wild S (2016) Melanoma affects the composition of blood cell-derived extracellular vesicles. Front Immunol 7:282. CrossRefGoogle Scholar
  46. 46.
    Sung BH, Weaver AM (2017) Exosome secretion promotes chemotaxis of cancer cells. Cell Adhesi Migr 11(2):187–195. CrossRefGoogle Scholar
  47. 47.
    Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, Wang Y, Zhang P, Weng W, Sheng W, Huang M, Wang Z (2017) Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin beta4/FAK/SOX2/HIF-1alpha signaling pathway in gastric cancer. Oncogene. Google Scholar
  48. 48.
    Naik MU, Naik TU, Summer R, Naik UP (2017) Binding of CIB1 to the αIIb tail of αIIbβ3 is required for FAK recruitment and activation in platelets. PloS one 12(5):e0176602. CrossRefGoogle Scholar
  49. 49.
    Keasey MP, Jia C, Pimentel LF, Sante RR, Lovins C, Hagg T (2018) Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin-FAK and uPAR signaling. J Cell Sci. Google Scholar
  50. 50.
    Li CL, Yang D, Cao X, Wang F, Hong DY, Wang J, Shen XC, Chen Y (2017) Fibronectin induces epithelial-mesenchymal transition in human breast cancer MCF-7 cells via activation of calpain. Oncol Lett 13(5):3889–3895. CrossRefGoogle Scholar
  51. 51.
    Hu C, Wen J, Gong L, Chen X, Wang J, Hu F, Zhou Q, Liang J, Wei L, Shen Y, Zhang W (2017) Thrombospondin-1 promotes cell migration, invasion and lung metastasis of osteosarcoma through FAK dependent pathway. Oncotarget 8(44):75881–75892. Google Scholar
  52. 52.
    Lawson C, Lim ST, Uryu S, Chen XL, Calderwood DA, Schlaepfer DD (2012) FAK promotes recruitment of talin to nascent adhesions to control cell motility. J Cell Biol 196(2):223–232. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tatiana Shtam
    • 1
    • 2
    • 3
  • Stanislav Naryzhny
    • 3
    • 4
  • Roman Samsonov
    • 1
    • 2
  • David Karasik
    • 5
  • Igor Mizgirev
    • 1
  • Artur Kopylov
    • 4
  • Elena Petrenko
    • 4
  • Yana Zabrodskaya
    • 3
    • 6
  • Roman Kamyshinsky
    • 7
  • Daniil Nikitin
    • 8
    • 9
  • Maxim Sorokin
    • 9
    • 10
  • Anton Buzdin
    • 8
    • 9
    • 10
  • Hava Gil-Henn
    • 5
    Email author
  • Anastasia Malek
    • 1
    • 2
    Email author
  1. 1.N.N. Petrov National Medical Research Center of OncologySt.-PetersburgRussia
  2. 2.Oncosystem Ltd.MoscowRussia
  3. 3.Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”GatchinaRussia
  4. 4.Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical SciencesMoscowRussia
  5. 5.The Azrieli Faculty of MedicineBar-Ilan UniversitySafedIsrael
  6. 6.Smorodintsev Research Institute of InfluenzaMinistry of Healthcare of the Russian FederationSt.-PetersburgRussia
  7. 7.National Research Center “Kurchatov Institute”MoscowRussia
  8. 8.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
  9. 9.Omics Way Corp.WalnutUSA
  10. 10.I.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia

Personalised recommendations