Safety of 5α-reductase inhibitors and spironolactone in breast cancer patients receiving endocrine therapies

  • Raquel N. Rozner
  • Azael Freites-Martinez
  • Jerry Shapiro
  • Eliza B. Geer
  • Shari Goldfarb
  • Mario E. LacoutureEmail author



To provide dermatologists and oncologists with a foundation for practical understanding and uses of 5α-reductase inhibitors and spironolactone for breast cancer patients and survivors receiving endocrine therapies (ETs), including the effect of these treatments on sex hormone levels, any reported drug interactions, and any risk of malignancy.


All published studies from January 1978 through April 2018 were considered, using databases such as PubMed, Google Scholar, and Science Direct. Forty-seven studies were included in this review.


There is no evidence of interactions between 5α-reductase inhibitors and spironolactone with ETs used in breast cancer. Sex hormone alteration with 5α-reductase inhibitor or spironolactone use is variable. Three randomized controlled trials, 1 case–control study, and 6 retrospective cohort studies, including 284 female patients, studied the effects of 5α-reductase inhibitors on serum estrogen levels. Levels were increased in 97 of 284 (34%) patients, decreased in 15 of 284 (5.3%) patients, and unchanged in 162 of 284 (57%) patients. Four retrospective cohort studies, 1 case study, and 1 double-blinded crossover study, including 95 female patients, assessed the effect of spironolactone on estrogen levels. Levels were increased in 25 of 95 (26%) patients, decreased in 6 of 95 (6.3%) patients, and unchanged in 64 of 95 (67%) patients. Ultimately, most patients did not have a significant alteration in the level of estrogen when using 5α-reductase inhibitors or spironolactone. No consistent evidence of increased risk of female breast cancer while on spironolactone was reported in 3 studies including 49,298 patients; the risk of breast cancer with the use of 5α-reductase inhibitors has not been studied.


Most patients did not show increased estrogen levels with spironolactone and there were no data suggesting increased risk of breast cancer. Based on hormonal and pharmacological activity, spironolactone may be considered for further research on alopecia and hirsutism in breast cancer patients.


5α-Reductase inhibitors Spironolactone Female pattern hair loss Female breast cancer Endocrine therapy 



This study was supported in part by the NIH/NCI Cancer Center Support Grant P30 CA008748. This research was additionally funded in part by Beca Excelencia Fundación Piel Sana (Dr. Freites-Martinez) and the RJR Grant. The sponsors had no role in the design and conduct of the study; in the collection, analysis, and interpretation of data; in the preparation, review, or approval of the manuscript; or in the decision to submit the manuscript for publication.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest with regard to the preparation of this manuscript.


Mario E. Lacouture has no relevant conflicts of interest with regard to preparation of this manuscript. He has served as consultant for Legacy, Adgero, Debiopharm,Galderma, Johnson and Johnson, Novocure Inc., Merck, Helsinn, Janssen, Menlo Ther, Novartis, Roche, Abbvie, Boehringer Ingelheim, Amgen, E.R. Squibb & Sons, EMD Serono, Genentech, Seattle Genetics, Bayer, Manner SAS,  Lutris, Paxman Coolers, Pfizer, Bristol-Myers Squibb, Silk Therapeutics, Foamix, and Medische Voet. He has received research funding from GSK, Novartis, Veloce, US Biotest, Berg, Bristol-Myers Squibb. Eliza B. Geer has no relevant conflicts of interest with regard to preparation of this manuscript. She has served as the principal investigator of research grants to MSKCC from Novartis, Strongbridge, Chiasma, and IONIS and has received occasional consulting honoraria from Novartis, Strongbridge, Corcept, and Pfizer. Jerry Shapiro has no relevant conflicts of interest with regard to preparation of this manuscript. He has served as a consultant for Aclaris, Samumed, Incyte, Replicel Life Sciences, and Shook, Hardy, Bacon LLP who represent Sanofi Aventis US LLC.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    World Health Organization. WHO | breast cancer: prevention and control. Accessed 26 Nov 2017
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics (2018) CA Cancer J Clin 2018 68(1):7–30. Google Scholar
  3. 3.
    Moscetti L, Agnese Fabbri M, Sperduti I et al (2015) Adjuvant aromatase inhibitor therapy in early breast cancer: what factors lead patients to discontinue treatment? Tumori 101(5):469. PubMedGoogle Scholar
  4. 4.
    Saggar V, Wu S, Dickler MN, Lacouture ME (2013) Alopecia with endocrine therapies in patients with cancer. Oncologist 18(10):1126–1134. Epub 13 Sep 2013PubMedPubMedCentralGoogle Scholar
  5. 5.
    Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N Engl J Med 348(24):2431–2442. Accessed 6 April 2018PubMedGoogle Scholar
  6. 6.
    Freites-Martinez A, Shapiro J, van den Hurk C, et al (2018) CME part 2: hair disorders in cancer survivors persistent chemotherapy-induced alopecia, persistent radiotherapy-induced alopecia, and hair growth disorders related to endocrine therapy or cancer surgery. J Am Acad Dermatol. PubMedGoogle Scholar
  7. 7.
    Freites-Martinez A, Shapiro J, Chan D et al (2018) Endocrine therapy-induced alopecia in patients with breast cancer. JAMA Dermatol. PubMedGoogle Scholar
  8. 8.
    Bourgeois H, Kerbrat P, Combe M et al (2010) Long term persistent alopecia and suboptimal hair regrowth after adjuvant chemotherapy for breast cancer: alert for an emerging side effect: French ALOPERS Observatory. Ann Oncol 21:83–84Google Scholar
  9. 9.
    Kang D, Kim IR, Lee D et al (2017) Incidence of permanent chemotherapy-induced alopecia among breast cancer patients: a five-year prospective cohort study. Ann Oncol 28:22Google Scholar
  10. 10.
    Kim S, Park H, Kim J et al (2016) Irreversible chemotherapy-induced alopecia in breast cancer patient. Cancer Res. Google Scholar
  11. 11.
    Masidonski P (2009) Permanent alopecia in women being treated for breast cancer. Clin J Oncol Nurs 13(1):13–15. PubMedGoogle Scholar
  12. 12.
    Bertrand M, Mailliez A, Vercambre S, Kotecki N, Mortier L, Bonneterre J(2013) Permanent chemotherapy induced alopecia in early breast cancer patients after (neo)adjuvant chemotherapy: long term follow up. Cancer Res. Google Scholar
  13. 13.
    Fonia A, Cota C, Setterfield JF, Goldberg LJ, Fenton DA, Stefanato CM (2017) Permanent alopecia in patients with breast cancer after taxane chemotherapy and adjuvant hormonal therapy: clinicopathologic findings in a cohort of 10 patients. J Am Acad Dermatol 76(5):948–957. PubMedGoogle Scholar
  14. 14.
    Kluger N, Jacot W, Frouin E et al (2012) Permanent scalp alopecia related to breast cancer chemotherapy by sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel: a prospective study of 20 patients. Ann Oncol 23(11):2879–2884. Epub 9 May 2012PubMedGoogle Scholar
  15. 15.
    Thorp N, Swift F, Arundell D, Wong H (2015) Long term hair loss in patients with early breast cancer receiving docetaxel chemotherapy. Cancer Res. Google Scholar
  16. 16.
    Otberg N, Shapiro J (2012) Chapter 88. Hair growth disorders. In: Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ, Wolff K (eds) Fitzpatrick’s dermatology in general medicine, 8th edn. The McGraw-Hill Companies, New York. Accessed 25 March 2018
  17. 17.
    Sinclair R, Wewerinke M, Jolley D (2005) Treatment of female pattern hair loss with oral antiandrogens. Br J Dermatol 152(3):466–473. PubMedGoogle Scholar
  18. 18.
    van Zuuren EJ, Fedorowicz Z (2017) Interventions for female pattern hair loss. JAMA Dermatol 153(3):329–330. PubMedGoogle Scholar
  19. 19.
    Clinical efficacy of oral administration of finasteride at a dose of 2.5 mg/day in women with female pattern hair loss (2018). Dermatol Ther 31(2):e12588. PubMedGoogle Scholar
  20. 20.
    Camacho-Martinez F (2009) Hair loss in women. Semin Cutan Med Surg 28(1):19–32. PubMedGoogle Scholar
  21. 21.
    Trüeb RM (2004) Finasteride treatment of patterned hair loss in normoandrogenic postmenopausal women. Dermatology 209(3):202–207. Accessed 20 March 2018PubMedGoogle Scholar
  22. 22.
    Seale LR, Eglini AN, McMichael AJ (2016) Side effects related to 5 α-reductase inhibitor treatment of hair loss in women: a review. J Drugs Dermatol 15(4):414–419PubMedGoogle Scholar
  23. 23.
    Gupta AK, Charrette A (2014) The efficacy and safety of 5α-reductase inhibitors in androgenetic alopecia: a network meta-analysis and benefit-risk assessment of finasteride and dutasteride. J Dermatol Treat 25(2):156–161. Accessed 26 March 2018PubMedGoogle Scholar
  24. 24.
    Boychenko O, Bernstein RM, Schweiger ES (2012) Finasteride in the treatment of female pattern (androgenic) alopecia: a case report and review of the literature. Cutis 90(2):73–76PubMedGoogle Scholar
  25. 25.
    Yeon JH, Jung JY, Choi JW et al (2011) 5 mg/day finasteride treatment for normoandrogenic asian women with female pattern hair loss. J Eur Acad Dermatol Venereol 25(2):211–214. Accessed 26 March 2018PubMedGoogle Scholar
  26. 26.
    Mella JM, Perret MC, Manzotti M, Catalano HN, Guyatt G (2010) Efficacy and safety of finasteride therapy for androgenetic alopecia: a systematic review. Arch Dermatol 146(10):1141–1150. Accessed 26 March 2018
  27. 27.
    Iorizzo M, Vincenzi C, Voudouris S, Piraccini BM, Tosti A (2006) Finasteride treatment of female pattern hair loss. Arch Dermatol 142(3):298–302. Accessed 26 March 2018
  28. 28.
    Price VH, Roberts JL, Hordinsky M et al (2000) Lack of efficacy of finasteride in postmenopausal women with androgenetic alopecia. J Am Acad Dermatol 43(5 Pt 1):768–776. Accessed 20 March 2018PubMedGoogle Scholar
  29. 29.
    Moghetti P, Castello R, Magnani CM et al (1994) Clinical and hormonal effects of the 5 alpha-reductase inhibitor finasteride in idiopathic hirsutism. J Clin Endocrinol Metab 79(4):1115–1121. Accessed 11 April 2018Google Scholar
  30. 30.
    Wong IL, Morris RS, Chang L, Spahn MA, Stanczyk FZ, Lobo RA (1995) A prospective randomized trial comparing finasteride to spironolactone in the treatment of hirsute women. J Clin Endocrinol Metab 80(1):233–238. PubMedGoogle Scholar
  31. 31.
    Castello R, Tosi F, Perrone F, Negri C, Muggeo M, Moghetti P (1996) Outcome of long-term treatment with the 5 alpha-reductase inhibitor finasteride in idiopathic hirsutism: clinical and hormonal effects during a 1-year course of therapy and 1-year follow-up. Fertil Steril 66(5):734–740.
  32. 32.
    Venturoli S, Marescalchi O, Colombo FM et al (1999) A prospective randomized trial comparing low dose flutamide, finasteride, ketoconazole, and cyproterone acetate-estrogen regimens in the treatment of hirsutism. J Clin Endocrinol Metab 84(4):1304–1310. PubMedGoogle Scholar
  33. 33.
    Shum KW, Cullen DR, Messenger AG (2002) Hair loss in women with hyperandrogenism: four cases responding to finasteride. J Am Acad Dermatol 47(5):733–739PubMedGoogle Scholar
  34. 34.
    Somani N (2014) Hirsutism: an evidence-based treatment update. Am J Clin Dermatol 15(3):247–267. PubMedGoogle Scholar
  35. 35.
    Rossi A, Iorio A, Scali E et al (2013) Aromatase inhibitors induce ‘male pattern hair loss’ in women? Ann Oncol Off J Eur Soc Med Oncol 24(6):1710. Google Scholar
  36. 36.
    Price VH (1975) Testosterone metabolism in the skin. A review of its function in androgenetic alopecia, acne vulgaris, and idiopathic hirsutism including recent studies with antiandrogens. Arch Dermatol 111(11):1496–1502PubMedGoogle Scholar
  37. 37.
    Kaufman KD (1996) Androgen metabolism as it affects hair growth in androgenetic alopecia. Dermatol Clin 14(4):697–711PubMedGoogle Scholar
  38. 38.
    Price VH (1999) Treatment of hair loss. N Engl J Med 341(13):964–973. Accessed 19 March 2018PubMedGoogle Scholar
  39. 39.
    Vexiau P, Chaspoux C, Boudou P et al (2000) Role of androgens in female-pattern androgenetic alopecia, either alone or associated with other symptoms of hyperandrogenism. Arch Dermatol Res 292(12):598–604PubMedGoogle Scholar
  40. 40.
    Ohnemus U, Uenalan M, Inzunza J, Gustafsson J, Paus R (2006) The hair follicle as an estrogen target and source. Endocr Rev 27(6):677–706. Accessed 31 May 2018PubMedGoogle Scholar
  41. 41.
    Conrad F, Ohnemus U, Bodo E et al (2005) Substantial sex-dependent differences in the response of human scalp hair follicles to estrogen stimulation in vitro advocate gender-tailored management of female versus male pattern balding. J Investig Dermatol Symp Proc 10(3):243–246. 31 May 2018
  42. 42.
    Langan EA, Paus R (2010) Female pattern hair loss: beyond an androgenic aetiology? Br J Dermatol 163(5):1142. Accessed 31 May 2018PubMedGoogle Scholar
  43. 43.
    Bickenbach KA, Jaskowiak N (2006) Aromatase inhibitors: an overview for surgeons. J Am Coll Surg 203(3):376–389. Accessed 19 March 2018PubMedGoogle Scholar
  44. 44.
    Yu H, Shu X, Shi R et al (2003) Plasma sex steroid hormones and breast cancer risk in Chinese women. Int J Cancer 105(1):92–97. Accessed 19 March 2018PubMedGoogle Scholar
  45. 45.
    Del Re M, Michelucci A, Simi P, Danesi R (2012) Pharmacogenetics of anti-estrogen treatment of breast cancer. Cancer Treat Rev 38(5):442–450. PubMedGoogle Scholar
  46. 46.
    Boutin JA (1994) Tyrosine protein kinase inhibition and cancer. Int J Biochem 26(10–11):1203–1226PubMedGoogle Scholar
  47. 47.
    Fortunati N (1999) Sex hormone-binding globulin: not only a transport protein. What news is around the corner? J Endocrinol Investig 22(3):223–234. Accessed 19 March 2018PubMedGoogle Scholar
  48. 48.
    Yip L, Zaloumis S, Irwin D et al (2009) Gene-wide association study between the aromatase gene (CYP19A1) and female pattern hair loss. Br J Dermatol 161(2):289–294. Accessed 20 March 2018PubMedGoogle Scholar
  49. 49.
    Yip L, Rufaut N, Sinclair R (2011) Role of genetics and sex steroid hormones in male androgenetic alopecia and female pattern hair loss: an update of what we now know. Australas J Dermatol 52(2):81–88. Accessed 20 March 2018PubMedGoogle Scholar
  50. 50.
    Mirmirani P (2011) Hormonal changes in menopause: do they contribute to a ‘midlife hair crisis’ in women? Br J Dermatol 165(Suppl 3):7–11. Accessed 20 March 2018PubMedGoogle Scholar
  51. 51.
    Neven P, Paridaens R, Pelgrims G et al (2008) Fulvestrant (faslodex) in advanced breast cancer: clinical experience from a Belgian Cooperative Study. Breast Cancer Res Treat 109(1):59–65. Accessed 19 March 2018PubMedGoogle Scholar
  52. 52.
    Atanaskova Mesinkovska N, Bergfeld WF (2013) Hair: what is new in diagnosis and management? Female pattern hair loss update: diagnosis and treatment. Dermatol Clin 31(1):119–127. Accessed 20 March 2018PubMedGoogle Scholar
  53. 53.
    Gallicchio L, Calhoun C, Helzlsouer KJ (2013) Aromatase inhibitor therapy and hair loss among breast cancer survivors. Breast Cancer Res Treat 142(2):435–443. Accessed 19 March 2018PubMedGoogle Scholar
  54. 54.
    Futterweit W, Dunaif A, Yeh HC, Kingsley P (1988) The prevalence of hyperandrogenism in 109 consecutive female patients with diffuse alopecia. J Am Acad Dermatol 19(5 Pt 1):831–836PubMedGoogle Scholar
  55. 55.
    Fruzzetti F, de Lorenzo D, Parrini D, Ricci C (1994) Effects of finasteride, a 5 alpha-reductase inhibitor, on circulating androgens and gonadotropin secretion in hirsute women. J Clin Endocrinol Metab 79(3):831–835. PubMedGoogle Scholar
  56. 56.
    Ciotta L, Cianci A, Calogero AE et al (1995) Clinical and endocrine effects of finasteride, a 5 alpha-reductase inhibitor, in women with idiopathic hirsutism. Fertil Steril 64(2):299–306.
  57. 57.
    Bayhan G, Bahceci M, Demirkol T, Ertem M, Yalinkaya A, Erden AC (2000) A comparative study of a gonadotropin-releasing hormone agonist and finasteride on idiopathic hirsutism. Clin Exp Obstet Gynecol 27(3–4):203–206.
  58. 58.
    Bayram F, Muderris II, Guven M, Kelestimur F (2002) Comparison of high-dose finasteride (5 mg/day) versus low-dose finasteride (2.5 mg/day) in the treatment of hirsutism. Eur J Endocrinol 147(4):467–471. PubMedGoogle Scholar
  59. 59.
    Tartagni M, Schonauer MM, Cicinelli E et al (2004) Intermittent low-dose finasteride is as effective as daily administration for the treatment of hirsute women. Fertil Steril 82(3):752–755. PubMedGoogle Scholar
  60. 60.
    Fruzzetti F, Bersi C, Parrini D, Ricci C, Genazzani AR (1999) Treatment of hirsutism: comparisons between different antiandrogens with central and peripheral effects. Fertil Steril 71(3):445–451. PubMedGoogle Scholar
  61. 61.
    Moghetti P, Tosi F, Tosti A et al (2000) Comparison of spironolactone, flutamide, and finasteride efficacy in the treatment of hirsutism: a randomized, double blind, placebo-controlled trial. J Clin Endocrinol Metab 85(1):89–94. PubMedGoogle Scholar
  62. 62.
    Beigi A, Sobhi A, Zarrinkoub F (2004) Finasteride versus cyproterone acetate-estrogen regimens in the treatment of hirsutism. Int J Gynaecol Obstet 87(1):29–33. PubMedGoogle Scholar
  63. 63.
    Faloia E, Filipponi S, Mancini V, Di Marco S, Mantero F (1998) Effect of finasteride in idiopathic hirsutism. J Endocrinol Investig 21(10):694–698. Google Scholar
  64. 64.
    Sahin Y, Bayram F, Kelestimur F, Muderris I (1998) Comparison of cyproterone acetate plus ethinyl estradiol and finasteride in the treatment of hirsutism. J Endocrinol Investig 21(6):348–352. Google Scholar
  65. 65.
    Bayram F, Muderris II, Sahin Y, Kelestimur F (1999) Finasteride treatment for one year in 35 hirsute patients. Exp Clin Endocrinol Diabetes 107(3):195–197. PubMedGoogle Scholar
  66. 66.
    Bayram F, Müderris I, Güven M, Ozçelik B, Keleştimur F (2003) Low-dose (2.5 mg/day) finasteride treatment in hirsutism. Gynecol Endocrinol 17(5):419–422PubMedGoogle Scholar
  67. 67.
    Muderris II, Bayram F, Guven M (2000) A prospective, randomized trial comparing flutamide (250 mg/day) and finasteride (5 mg/day) in the treatment of hirsutism. Fertil Steril 73(5):984–987. PubMedGoogle Scholar
  68. 68.
    Lakryc EM, Motta EL, Soares Jr JM, Haidar MA, de Lima GR, Baracat EC (2003) The benefits of finasteride for hirsute women with polycystic ovary syndrome or idiopathic hirsutism. Gynecol Endocrinol 17(1):57–63. PubMedGoogle Scholar
  69. 69.
    Falsetti L, Gambera A, Legrenzi L, Iacobello C, Bugari G (1999) Comparison of finasteride versus flutamide in the treatment of hirsutism. Eur J Endocrinol 141(4):361–367. PubMedGoogle Scholar
  70. 70.
    Olsen EA, Hordinsky M, Whiting D et al (2006) The importance of dual 5alpha-reductase inhibition in the treatment of male pattern hair loss: results of a randomized placebo-controlled study of dutasteride versus finasteride. J Am Acad Dermatol 55(6):1014–1023. PubMedGoogle Scholar
  71. 71.
    Roehrborn CG, Boyle P, Nickel JC, Hoefner K, Andriole G (2002) Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology 60(3):434–441PubMedGoogle Scholar
  72. 72.
    Drake L, Hordinsky M, Fiedler V et al (1999) The effects of finasteride on scalp skin and serum androgen levels in men with androgenetic alopecia. J Am Acad Dermatol 41(4):550–554PubMedGoogle Scholar
  73. 73.
    Chau CH, Price DK, Till C et al (2015) Finasteride concentrations and prostate cancer risk: results from the prostate cancer prevention trial. PLoS ONE 10(5):e0126672. PubMedPubMedCentralGoogle Scholar
  74. 74.
    Duijnhoven RG, Straus SM, Souverein PC et al (2014) Long-term use of 5alpha-reductase inhibitors and the risk of male breast cancer. Cancer Causes Control 25(11):1577–1582. Epub 19 Aug 2014PubMedGoogle Scholar
  75. 75.
    Bird ST, Brophy JM, Hartzema AG, Delaney JA, Etminan M (2013) Male breast cancer and 5alpha-reductase inhibitors finasteride and dutasteride. J Urol 190(5):1811–1814. Epub 9 May 2013PubMedGoogle Scholar
  76. 76.
    Meijer M, Thygesen LC, Green A et al (2018) Finasteride treatment and male breast cancer: a register-based cohort study in four Nordic countries. Cancer Med 7(1):254–260. PubMedGoogle Scholar
  77. 77.
    Gardiner P, Schrode K, Quinlan D et al (1989) Spironolactone metabolism: steady-state serum levels of the sulfur-containing metabolites. J Clin Pharmacol 29(4):342–347PubMedPubMedCentralGoogle Scholar
  78. 78.
    Li CI, Malone KE, Weiss NS, Boudreau DM, Cushing-Haugen K, Daling JR (2003) Relation between use of antihypertensive medications and risk of breast carcinoma among women ages 65–79 years. Cancer 98(7):1504–1513. PubMedGoogle Scholar
  79. 79.
    Fryzek JP, Poulsen AH, Lipworth L et al (2006) A cohort study of antihypertensive medication use and breast cancer among Danish women. Breast Cancer Res Treat 97(3):231–236. Accessed 24 March 2018PubMedGoogle Scholar
  80. 80.
    Biggar RJ, Andersen EW, Wohlfahrt J, Melbye M (2013) Spironolactone use and the risk of breast and gynecologic cancers. Cancer Epidemiol 37(6):870–875. Epub 1 Nov 2013PubMedGoogle Scholar
  81. 81.
    Mackenzie IS, Macdonald TM, Thompson A, Morant S, Wei L (2012) Spironolactone and risk of incident breast cancer in women older than 55 years: retrospective, matched cohort study. BMJ 345:e4447PubMedPubMedCentralGoogle Scholar
  82. 82.
    Mackenzie IS, Morant SV, Wei L, Thompson AM, MacDonald TM (2017) Spironolactone use and risk of incident cancers: a retrospective, matched cohort study. Br J Clin Pharmacol 83(3):653–663. Accessed 17 March 2018PubMedPubMedCentralGoogle Scholar
  83. 83.
    Ober KP, Hennessy JF (1978) Spironolactone therapy for hirsutism in a hyperandrogenic woman. Ann Intern Med 89(5):643–644. PubMedGoogle Scholar
  84. 84.
    Ganie MA, Khurana ML, Nisar S et al (2013) Improved efficacy of low-dose spironolactone and metformin combination than either drug alone in the management of women with polycystic ovary syndrome (PCOS): a six-month, open-label randomized study. J Clin Endocrinol Metab 98(9):3599–3607. Epub 11 July 2013PubMedGoogle Scholar
  85. 85.
    Boisselle A, Tremblay RR (1979) New therapeutic approach to the hirsute patient. Fertil Steril 32(3):276–279. PubMedGoogle Scholar
  86. 86.
    Cumming DC, Yang JC, Rebar RW, Yen SS (1982) Treatment of hirsutism with spironolactone. JAMA 247(9):1295–1298. PubMedGoogle Scholar
  87. 87.
    Milewicz A, Silber D, Kirschner MA (1983) Therapeutic effects of spironolactone in polycystic ovary syndrome. Obstet Gynecol 61(4):429–432.
  88. 88.
    Lobo RA, Shoupe D, Serafini P, Brinton D, Horton R (1985) The effects of two doses of spironolactone on serum androgens and anagen hair in hirsute women. Fertil Steril 43(2):200–205.
  89. 89.
    Shapiro G, Evron S (1980) A novel use of spironolactone: treatment of hirsutism. J Clin Endocrinol Metab 51(3):429–432. PubMedGoogle Scholar
  90. 90.
    Dorrington-Ward P, McCartney AC, Holland S et al (1985) The effect of spironolactone on hirsutism and female androgen metabolism. Clin Endocrinol (Oxf) 23(2):161–167. PubMedGoogle Scholar
  91. 91.
    Smals AG, Kloppenborg PW, Hoefnagels WH, Drayer JI (1979) Pituitary–thyroid function in spironolactone treated hypertensive women. Acta Endocrinol 90(4):577–584. PubMedGoogle Scholar
  92. 92.
    Siegberg R, Ylostalo P, Laatikainen T, Pelkonen R, Stenman UH (1987) Endocrine and clinical effects of spironolactone in female hyperandrogenism. Arch Gynecol 240(2):67–73. PubMedGoogle Scholar
  93. 93.
    Erenus M, Yucelten D, Durmusoglu F, Gurbuz O (1997) Comparison of finasteride versus spironolactone in the treatment of idiopathic hirsutism. Fertil Steril 68(6):1000–1003. PubMedGoogle Scholar
  94. 94.
    Spritzer PM, Lisboa KO, Mattiello S, Lhullier F (2000) Spironolactone as a single agent for long-term therapy of hirsute patients. Clin Endocrinol (Oxf) 52(5):587–594. PubMedGoogle Scholar
  95. 95.
    Sert M, Tetiker T, Kirim S (2003) Comparison of the efficiency of anti-androgenic regimens consisting of spironolactone, Diane 35, and cyproterone acetate in hirsutism. Acta Med Okayama 57(2):73–76.
  96. 96.
    Lumachi F, Rondinone R (2003) Use of cyproterone acetate, finasteride, and spironolactone to treat idiopathic hirsutism. Fertil Steril 79(4):942–946. PubMedGoogle Scholar
  97. 97.
    Kelestimur F, Everest H, Unluhizarci K, Bayram F, Sahin Y (2004) A comparison between spironolactone and spironolactone plus finasteride in the treatment of hirsutism. Eur J Endocrinol 150(3):351–354. PubMedGoogle Scholar
  98. 98.
    Yemisci A, Gorgulu A, Piskin S (2005) Effects and side-effects of spironolactone therapy in women with acne. J Eur Acad Dermatol Venereol 19(2):163–166. PubMedGoogle Scholar
  99. 99.
    Some thyrotropic agents (2001) IARC monographs on the evaluation of carcinogenic risks to humans, No. 79, p 725Google Scholar
  100. 100.
    Duvic M, Lemak NA, Valero V et al (1996) A randomized trial of minoxidil in chemotherapy-induced alopecia. J Am Acad Dermatol 35(1):74–78. PubMedGoogle Scholar
  101. 101.
    Rodriguez R, Machiavelli M, Leone B et al (1994) Minoxidil (mx) as a prophylaxis of doxorubicin-induced alopecia. Ann Oncol 5(8):769–770. PubMedGoogle Scholar
  102. 102.
    Uno H, Cappas A, Brigham P (1987) Action of topical minoxidil in the bald stump-tailed macaque. J Am Acad Dermatol 16(3 Pt 2):657–668PubMedGoogle Scholar
  103. 103.
    Hsu C, Liu J, Lin A, Yang C, Chung W, Wu W (2014) Minoxidil may suppress androgen receptor-related functions. OncoTarget 5(8):2187–2197. Accessed 7 April 2018
  104. 104.
    Buhl AE, Waldon DJ, Kawabe TT, Holland JM (1989) Minoxidil stimulates mouse vibrissae follicles in organ culture. J Investig Dermatol 92(3):315–320PubMedGoogle Scholar
  105. 105.
    Buhl AE (1991) Minoxidil’s action in hair follicles. J Investig Dermatol 96(5):74SGoogle Scholar
  106. 106.
    Burke BM, Cunliffe WJ (1985) Oral spironolactone therapy for female patients with acne, hirsutism or androgenic alopecia. Br J Dermatol 112(1):124–125. PubMedGoogle Scholar
  107. 107.
    Rathnayake D, Sinclair R (2010) Innovative use of spironolactone as an antiandrogen in the treatment of female pattern hair loss. Dermatol Clin 28(3):611–618. PubMedGoogle Scholar
  108. 108.
    Sawaya ME, Price VH (1997) Different levels of 5alpha-reductase type I and II, aromatase, and androgen receptor in hair follicles of women and men with androgenetic alopecia. J Investig Dermatol 109(3):296–300. Accessed 19 March 2018PubMedGoogle Scholar
  109. 109.
    Tolino A, Petrone A, Sarnacchiaro F et al (1996) Finasteride in the treatment of hirsutism: new therapeutic perspectives. Fertil Steril 66(1):61–65.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raquel N. Rozner
    • 1
  • Azael Freites-Martinez
    • 1
  • Jerry Shapiro
    • 2
  • Eliza B. Geer
    • 3
  • Shari Goldfarb
    • 4
  • Mario E. Lacouture
    • 1
    Email author
  1. 1.Department of DermatologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.The Ronald O. Perelman Department of DermatologyNew York University School of MedicineNew YorkUSA
  3. 3.Multidisciplinary Pituitary and Skull Base Tumor CenterMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.Breast Medicine Service, Memorial Sloan Kettering Cancer Center, and Department of MedicineWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations