Breast Cancer Research and Treatment

, Volume 172, Issue 2, pp 339–351 | Cite as

Somatic EP300-G211S mutations are associated with overall somatic mutational patterns and breast cancer specific survival in triple-negative breast cancer

  • Vahid Bemanian
  • John Christopher Noone
  • Torill Sauer
  • Joel Touma
  • Katja Vetvik
  • Cecilia Søderberg-Naucler
  • Jonas Christoffer Lindstrøm
  • Ida Rashida Bukholm
  • Vessela N. Kristensen
  • Jürgen Geisler
Preclinical study



We have compared the mutational profiles of human breast cancer tumor samples belonging to all major subgroups with special emphasis on triple-negative breast cancer (TNBC). Our major goal was to identify specific mutations that could be potentially used for clinical decision making in TNBC patients.

Patients and methods

Primary tumor specimens from 149 Norwegian breast cancer patients were available. We analyzed the tissue samples for somatic mutations in 44 relevant breast cancer genes by targeted next-generation sequencing. As a second confirmatory technique, we performed pyrosequencing on selected samples.


We observed a distinct subgroup of TNBC patients, characterized by an almost completely lack of pathogenic somatic mutations. A point mutation in the adenoviral E1A binding protein p300 (EP300-G211S) was significantly correlated to this TNBC subgroup. The EP300-G211S mutation was exclusively found in the TNBC patients and its presence reduced the chance for other pathological somatic mutations in typical breast cancer genes investigated in our gene panel by 94.9% (P < 0.005). Interestingly, the EP300-G211S mutation also predicted a lower risk for relapses and decreased breast cancer-specific mortality during long-term follow-up of the patients.


Next-generation sequencing revealed specific mutations in EP300 to be associated with the mutational patterns in typical breast cancer genes and long-term outcome of triple-negative breast cancer patients.


Breast cancer EP300 mutations Triple-negative breast cancer TP53 Next-generation sequencing Pyrosequencing 



The authors thanksfully acknowledge Ms. Gro Gundersen, Ms. Eva Smedsrud and M.Sc. Torben Lüders for the preparation of genomic DNA from FFPE samples (G.G. & E.S.) and EDTA-samples prior to pyrosequencing (T.L.).


This study was funded by Bodil and Magne´s Cancer Research Fund, Oslo, Norway.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HW, Luts J, Monleon D, Postma GJ, Schneiderhan-Marra N, Santoro F, Wouters H, Russnes HG, Sorlie T, Tagliabue E, Borresen-Dale AL, Consortium F (2010) Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 4(3):209–229. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, O’Regan R, Torres MA, Meisel JL (2017) Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat 161(2):279–287. CrossRefPubMedGoogle Scholar
  3. 3.
    Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X (2017) Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8(1):1913–1924. CrossRefPubMedGoogle Scholar
  4. 4.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. CrossRefGoogle Scholar
  5. 5.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. CrossRefGoogle Scholar
  6. 6.
    Turner NC, Reis-Filho JS (2013) Tackling the diversity of triple-negative breast cancer. Clin Cancer Res 19(23):6380–6388. CrossRefPubMedGoogle Scholar
  7. 7.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Group M, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang C, Pan B, Zhu H, Zhou Y, Mao F, Lin Y, Xu Q, Sun Q (2016) Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget 7(29):46482–46491. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bonnefoi H, Grellety T, Tredan O, Saghatchian M, Dalenc F, Mailliez A, L’Haridon T, Cottu P, Abadie-Lacourtoisie S, You B, Mousseau M, Dauba J, Del Piano F, Desmoulins I, Coussy F, Madranges N, Grenier J, Bidard FC, Proudhon C, MacGrogan G, Orsini C, Pulido M, Goncalves A (2016) A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol 27(5):812–818. CrossRefGoogle Scholar
  11. 11.
    McNamara KM, Yoda T, Takagi K, Miki Y, Suzuki T, Sasano H (2013) Androgen receptor in triple negative breast cancer. J Steroid Biochem Mol Biol 133:66–76. CrossRefPubMedGoogle Scholar
  12. 12.
    Denkert C, Liedtke C, Tutt A, von Minckwitz G (2016) Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. CrossRefPubMedGoogle Scholar
  13. 13.
    Rangel MC, Bertolette D, Castro NP, Klauzinska M, Cuttitta F, Salomon DS (2016) Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res Treat 156(2):211–226. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Massihnia D, Galvano A, Fanale D, Perez A, Castiglia M, Incorvaia L, Listi A, Rizzo S, Cicero G, Bazan V, Castorina S, Russo A (2016) Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget 7(37):60712–60722. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Habib JG, O’Shaughnessy JA (2016) The hedgehog pathway in triple-negative breast cancer. Cancer Med 5(10):2989–3006. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA (2014) New strategies for triple-negative breast cancer-deciphering the heterogeneity. Clin Cancer Res 20(4):782–790. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA (2015) Subtyping of triple-negative breast cancer: implications for therapy. Cancer 121(1):8–16. CrossRefGoogle Scholar
  18. 18.
    Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13(11):674–690. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Roy-Chowdhuri S, de Melo Gagliato D, Routbort MJ, Patel KP, Singh RR, Broaddus R, Lazar AJ, Sahin A, Alvarez RH, Moulder S, Wheler JJ, Janku F, Gonzalez-Angulo AM, Chavez-MacGregor M, Valero V, Ueno NT, Mills G, Mendelsohn J, Yao H, Aldape K, Luthra R, Meric-Bernstam F (2015) Multigene clinical mutational profiling of breast carcinoma using next-generation sequencing. Am J Clin Pathol 144(5):713–721. CrossRefPubMedGoogle Scholar
  20. 20.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399. CrossRefGoogle Scholar
  21. 21.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. CrossRefGoogle Scholar
  22. 22.
    Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, Geyer FC, van Kouwenhove M, Kreike B, Mackay A, Ashworth A, van de Vijver MJ, Reis-Filho JS (2010) Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29(14):2013–2023. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23(24):4225–4231. CrossRefPubMedGoogle Scholar
  25. 25.
    Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, t Hoen PA (2010) Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 38(16):5396–5408. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wendelsdorf K, Shah S (2015) Empowered genome community: leveraging a bioinformatics platform as a citizen-scientist collaboration tool. Appl Transl Genom 6:7–10. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92. CrossRefGoogle Scholar
  30. 30.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lai YL, Mau BL, Cheng WH, Chen HM, Chiu HH, Tzen CY (2008) PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Ann Surg Oncol 15(4):1064–1069. CrossRefPubMedGoogle Scholar
  33. 33.
    Santarpia L, Bottai G, Kelly CM, Gyorffy B, Szekely B, Pusztai L (2016) Deciphering and targeting oncogenic mutations and pathways in breast cancer. Oncologist 21(9):1063–1078. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zheng WS, He YX, Cui CY, Ouzhu L, Deji Q, Peng Y, Bai CJ, Duoji Z, Gongga L, Bian B, Baima K, Pan YY, Qu, Kang M, Ciren Y, Baima Y, Guo W, Yang, Zhang H, Zhang XM, Guo YB, Xu SH, Chen H, Zhao SG, Cai Y, Liu SM, Wu TY, Qi XB, Su B (2017) EP300 contributes to high-altitude adaptation in Tibetans by regulating nitric oxide production. Zool Res 38(3):163–170. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang F, Marshall CB, Ikura M (2013) Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 70(21):3989–4008. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Grossman SR (2001) p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem 268(10):2773–2778CrossRefGoogle Scholar
  38. 38.
    Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM (2000) CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proc Natl Acad Sci USA 97(3):1020–1025CrossRefGoogle Scholar
  39. 39.
    Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383(6595):99–103. CrossRefPubMedGoogle Scholar
  40. 40.
    Attar N, Kurdistani SK (2017) Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb Perspect Med 7 (3). CrossRefGoogle Scholar
  41. 41.
    Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24(3):300–303. CrossRefPubMedGoogle Scholar
  42. 42.
    Wirtenberger M, Tchatchou S, Hemminki K, Schmutzhard J, Sutter C, Schmutzler RK, Meindl A, Wappenschmidt B, Kiechle M, Arnold N, Weber BH, Niederacher D, Bartram CR, Burwinkel B (2006) Associations of genetic variants in the estrogen receptor coactivators PPARGC1A, PPARGC1B and EP300 with familial breast cancer. Carcinogenesis 27(11):2201–2208. CrossRefPubMedGoogle Scholar
  43. 43.
    Dyson HJ, Wright PE (2016) Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 291(13):6714–6722. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Teufel DP, Freund SM, Bycroft M, Fersht AR (2007) Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA 104(17):7009–7014. CrossRefPubMedGoogle Scholar
  45. 45.
    Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc Natl Acad Sci USA 106(16):6591–6596. CrossRefPubMedGoogle Scholar
  46. 46.
    Thomas PD, Kahn M (2016) Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation. Cell Biol Toxicol 32(1):61–81. CrossRefPubMedGoogle Scholar
  47. 47.
    Yuan LW, Gambee JE (2000) Phosphorylation of p300 at serine 89 by protein kinase C. J Biol Chem 275(52):40946–40951. CrossRefPubMedGoogle Scholar
  48. 48.
    Huang WC, Chen CC (2005) Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol 25(15):6592–6602. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Green KA, Carroll JS (2007) Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 7(9):713–722. CrossRefPubMedGoogle Scholar
  50. 50.
    Hottiger MO, Nabel GJ (2000) Viral replication and the coactivators p300 and CBP. Trends Microbiol 8(12):560–565CrossRefGoogle Scholar
  51. 51.
    Ferreon JC, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci USA 106(32):13260–13265. CrossRefPubMedGoogle Scholar
  52. 52.
    Rahbar A, Touma J, Costa H, Davoudi B, Bukholm IR, Sauer T, Vetvik K, Geisler J, Soderberg-Naucler C (2017) Low expression of estrogen receptor-alpha and progesterone receptor in human breast cancer tissues is associated with high-grade human cytomegalovirus protein expression. Clin Breast Cancer. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vahid Bemanian
    • 1
  • John Christopher Noone
    • 1
  • Torill Sauer
    • 2
    • 3
  • Joel Touma
    • 4
    • 5
  • Katja Vetvik
    • 3
    • 4
  • Cecilia Søderberg-Naucler
    • 6
  • Jonas Christoffer Lindstrøm
    • 3
    • 7
  • Ida Rashida Bukholm
    • 4
    • 9
    • 10
  • Vessela N. Kristensen
    • 3
    • 8
  • Jürgen Geisler
    • 3
    • 5
  1. 1.Section of Gene TechnologyAkershus University HospitalLørenskogNorway
  2. 2.Department of PathologyAkershus University HospitalLørenskogNorway
  3. 3.Institute of Clinical MedicineUniversity of OsloLørenskogNorway
  4. 4.Department of Breast and Endocrine SurgeryAkershus University HospitalLørenskogNorway
  5. 5.Department of OncologyAkershus University HospitalLørenskogNorway
  6. 6.Department of Medicine at Solna, Experimental Cardiovascular Research Unit and Departments of Medicine and NeurologyCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
  7. 7.Health Services Research UnitAkershus University HospitalLørenskogNorway
  8. 8.Clinical Molecular Biology (EPIGEN)Akershus University HospitalLørenskogNorway
  9. 9.Norwegian System of Compensation to PatientsOsloNorway
  10. 10.The Norwegian University of Life SciencesÅsNorway

Personalised recommendations