Advertisement

Breast Cancer Research and Treatment

, Volume 172, Issue 1, pp 69–82 | Cite as

Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy

  • Yismeilin R. Feliz-Mosquea
  • Ashley A. Christensen
  • Adam S. Wilson
  • Brian Westwood
  • Jasmina Varagic
  • Giselle C. Meléndez
  • Anthony L. Schwartz
  • Qing-Rong Chen
  • Lesley Mathews Griner
  • Rajarshi Guha
  • Craig J. Thomas
  • Marc Ferrer
  • Maria J. Merino
  • Katherine L. Cook
  • David D. Roberts
  • David R. Soto-PantojaEmail author
Preclinical study

Abstract

Background

A perennial challenge in systemic cytotoxic cancer therapy is to eradicate primary tumors and metastatic disease while sparing normal tissue from off-target effects of chemotherapy. Anthracyclines such as doxorubicin are effective chemotherapeutic agents for which dosing is limited by development of cardiotoxicity. Our published evidence shows that targeting CD47 enhances radiation-induced growth delay of tumors while remarkably protecting soft tissues. The protection of cell viability observed with CD47 is mediated autonomously by activation of protective autophagy. However, whether CD47 protects cancer cells from cytotoxic chemotherapy is unknown.

Methods

We tested the effect of CD47 blockade on cancer cell survival using a 2-dimensional high-throughput cell proliferation assay in 4T1 breast cancer cell lines. To evaluate blockade of CD47 in combination with chemotherapy in vivo, we employed the 4T1 breast cancer model and examined tumor and cardiac tissue viability as well as autophagic flux.

Results

Our high-throughput screen revealed that blockade of CD47 does not interfere with the cytotoxic activity of anthracyclines against 4T1 breast cancer cells. Targeting CD47 enhanced the effect of doxorubicin chemotherapy in vivo by reducing tumor growth and metastatic spread by activation of an anti-tumor innate immune response. Moreover, systemic suppression of CD47 protected cardiac tissue viability and function in mice treated with doxorubicin.

Conclusions

Our experiments indicate that the protective effects observed with CD47 blockade are mediated through upregulation of autophagic flux. However, the absence of CD47 in did not elicit a protective effect in cancer cells, but it enhanced macrophage-mediated cancer cell cytolysis. Therefore, the differential responses observed with CD47 blockade are due to autonomous activation of protective autophagy in normal tissue and enhancement immune cytotoxicity against cancer cells.

Keywords

CD47 Autophagy Cytoprotection Breast cancer Cardio-oncology 

Abbreviations

AC

Activity of maximum concentration

CD

Cluster of differentiation

CD47 (−)

CD47 deficient

CD47M

CD47 morpholino

CRC

Concentration response curves

DMEM

Dulbecco’s modified eagle medium

DOX

Doxorubicin

DAMPs

Damage-associated molecular patterns

HIF1

Hypoxia-inducible factor 1

SIRPα

Signal regulatory protein alpha

UPR

Unfolded protein response

WT

Wild type

Notes

Acknowledgements

We would like to acknowledge the statistical and editorial assistance of the Wake Forest Clinical and Translational Science Institute (WF CTSI), which is supported by NCATS, National Institutes of Health, through Grant Award Number UL1TR001420.

Funding

This work was supported by the NCI Career Development Award-K22 1K22CA181274-01A1 (DSP), Wake Forest Baptist Comprehensive Cancer Center’s NCI Cancer Center Support Grant P30CA012197 (DSP, KLC), the Intramural Research Program of the NIH/NCI (DDR) and The National Center for Advancing Translational Sciences (NCATS) (MF, CJT).

Compliance with ethical standards

Conflict of interest

The authors of this manuscript have no conflicts of interest to report.

Ethical approval

Experiments in presented in this manuscript comply with the current laws of the United States of America and institutional research integrity policies. Tissue arrays from developed from tissues of human breast cancer patient sections analyzed in the Laboratory of Pathology National Cancer Institute, under approved protocol by the Institutional Review Board of the National Cancer Institute. Animal studies and procedures were approved by the Internal Animal Care and Use Committee (IACUC) of the NIH Intramural Research Program protocol # LP-012 and the Wake Forest IACUC protocol # A16-085. Other datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Supplementary material

10549_2018_4884_MOESM1_ESM.jpg (53 kb)
Supplementary material 1 (JPEG 56 KB). Supplemental Figure 1: (A) immunohistochemical staining of human mammary gland (top) and human invasive breast cancer (representative of 5 cases) with human antibody B6H12 (brown stain). (B) LDH release assay in MDA-MB-231 cells. (C)Efficiency of CD47 knock down using anti-sense morpholino treatment in tumors N = 5, *p < 0.05.

References

  1. 1.
    Herrmann J, Lerman A, Sandhu NP, Villarraga HR, Mulvagh SL, Kohli M (2014) Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc 89(9):1287–1306CrossRefGoogle Scholar
  2. 2.
    Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, Degraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD (2009) Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 1(3):3ra7CrossRefGoogle Scholar
  3. 3.
    Soto-Pantoja DR, Ridnour LA, Wink DA, Roberts DD (2013) Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Sci Rep 3:1038CrossRefGoogle Scholar
  4. 4.
    Lo J, Lau EY, So FT, Lu P, Chan VS, Cheung VC, Ching RH, Cheng BY, Ma MK, Ng IO et al (2016) Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma. Liver Int 36(5):737–745CrossRefGoogle Scholar
  5. 5.
    Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E, Pan F, Semenza GL (2018) Chemotherapy induces enrichment of CD47(+)/CD73(+)/PDL1(+) immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci USA 115(6):E1239–E1248CrossRefGoogle Scholar
  6. 6.
    Soto-Pantoja DR, Kaur S, Roberts DD (2015) CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 50(3):212–230CrossRefGoogle Scholar
  7. 7.
    Soto Pantoja DR, Miller TW, Pendrak ML, DeGraff WG, Sullivan C, Ridnour LA, Abu-Asab M, Wink DA, Tsokos M, Roberts DD (2012) CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy 8(11):0–1CrossRefGoogle Scholar
  8. 8.
    Soto-Pantoja DR, Stein EV, Rogers NM, Sharifi-Sanjani M, Isenberg JS, Roberts DD (2013) Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin Ther Targets 17(1):89–103CrossRefGoogle Scholar
  9. 9.
    Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA, Berzofsky JA, Roberts DD (2014) CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 74(23):6771–6783CrossRefGoogle Scholar
  10. 10.
    Turner N, Biganzoli L, Di Leo A (2015) Continued value of adjuvant anthracyclines as treatment for early breast cancer. Lancet Oncol 16(7):e362–e369CrossRefGoogle Scholar
  11. 11.
    Early Breast Cancer Trialists’ Collaborative G, Peto R, Davies C, Godwin J, Gray R, Pan HC, Clarke M, Cutter D, Darby S, McGale P et al (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379(9814):432–444CrossRefGoogle Scholar
  12. 12.
    Coombes RC, Bliss JM, Wils J, Morvan F, Espie M, Amadori D, Gambrosier P, Richards M, Aapro M, Villar-Grimalt A et al (1996) Adjuvant cyclophosphamide, methotrexate, and fluorouracil versus fluorouracil, epirubicin, and cyclophosphamide chemotherapy in premenopausal women with axillary node-positive operable breast cancer: results of a randomized trial. The International Collaborative Cancer Group. J Clin Oncol 14(1):35–45CrossRefGoogle Scholar
  13. 13.
    Ejlertsen B, Mouridsen HT, Jensen MB, Andersen J, Cold S, Edlund P, Ewertz M, Jensen BB, Kamby C, Nordenskjold B et al (2007) Improved outcome from substituting methotrexate with epirubicin: results from a randomised comparison of CMF versus CEF in patients with primary breast cancer. Eur J Cancer 43(5):877–884CrossRefGoogle Scholar
  14. 14.
    Hamilton DH, Matthews Griner L, Keller JM, Hu X, Southall N, Marugan J, David JM, Ferrer M, Palena C (2016) Targeting estrogen receptor signaling with fulvestrant enhances immune and chemotherapy-mediated cytotoxicity of human lung cancer. Clin Cancer ResGoogle Scholar
  15. 15.
    Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA 103(31):11473–11478CrossRefGoogle Scholar
  16. 16.
    Soto-Pantoja DR, Miller TW, Pendrak ML, DeGraff WG, Sullivan C, Ridnour LA, Abu-Asab M, Wink DA, Tsokos M, Roberts DD (2012) CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy 8(11):1628–1642CrossRefGoogle Scholar
  17. 17.
    Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109(17):6662–6667CrossRefGoogle Scholar
  18. 18.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167CrossRefGoogle Scholar
  19. 19.
    Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, Hammond EH, Kuderer NM, Liu MC, Mennel RG et al (2016) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: american society of clinical oncology clinical practice guideline. J Clin Oncol 34(10):1134–1150CrossRefGoogle Scholar
  20. 20.
    Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, DeGraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD (2009) Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 1:3ra7CrossRefGoogle Scholar
  21. 21.
    Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685CrossRefGoogle Scholar
  22. 22.
    Yang S, Zhang JJ, Huang XY (2012) Mouse models for tumor metastasis. Methods Mol Biol 928:221–228PubMedPubMedCentralGoogle Scholar
  23. 23.
    Peper JK, Schuster H, Loffler MW, Schmid-Horch B, Rammensee HG, Stevanovic S (2014) An impedance-based cytotoxicity assay for real-time and label-free assessment of T-cell-mediated killing of adherent cells. J Immunol Methods 405:192–198CrossRefGoogle Scholar
  24. 24.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61CrossRefGoogle Scholar
  25. 25.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12(1):1–222CrossRefGoogle Scholar
  26. 26.
    Sawyer DB, Peng X, Chen B, Pentassuglia L, Lim CC (2010) Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53(2):105–113CrossRefGoogle Scholar
  27. 27.
    Suzuki S, Yokobori T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Miyazaki T, Kato H et al (2012) CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 28(2):465–472CrossRefGoogle Scholar
  28. 28.
    Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, Weiskopf K, Willingham SB, Raveh T, Park CY et al (2010) Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2(63):63ra94CrossRefGoogle Scholar
  29. 29.
    Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138(2):286–299CrossRefGoogle Scholar
  30. 30.
    Nagahara M, Mimori K, Kataoka A, Ishii H, Tanaka F, Nakagawa T, Sato T, Ono S, Sugihara K, Mori M (2010) Correlated expression of CD47 and SIRPA in bone marrow and in peripheral blood predicts recurrence in breast cancer patients. Clin Cancer Res 16(18):4625–4635CrossRefGoogle Scholar
  31. 31.
    Kaur S, Elkahloun AG, Singh SP, Chen QR, Meerzaman DM, Song T, Manu N, Wu W, Mannan P, Garfield SH et al (2016) A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 7(9):10133–10152CrossRefGoogle Scholar
  32. 32.
    Bouguermouh S, Van VQ, Martel J, Gautier P, Rubio M, Sarfati M (2008) CD47 expression on T cell is a self-control negative regulator of type 1 immune response. J Immunol 180(12):8073–8082CrossRefGoogle Scholar
  33. 33.
    Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, Sykes M, Yang YG, Ohdan H (2007) Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci USA 104(12):5062–5066CrossRefGoogle Scholar
  34. 34.
    Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31(6):212–219CrossRefGoogle Scholar
  35. 35.
    Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, van de Rijn M et al (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 106(33):14016–14021CrossRefGoogle Scholar
  36. 36.
    Soto-Pantoja DR, Isenberg JS, Roberts DD (2011) Therapeutic targeting of CD47 to modulate tissue responses to ischemia and radiation. J Genet Syndr Gene Ther 2(2)Google Scholar
  37. 37.
    Isenberg JS, Annis DS, Pendrak ML, Ptaszynska M, Frazier WA, Mosher DF, Roberts DD (2009) Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. J Biol Chem 284(2):1116–1125CrossRefGoogle Scholar
  38. 38.
    Rath GM, Schneider C, Dedieu S, Rothhut B, Soula-Rothhut M, Ghoneim C, Sid B, Morjani H, El Btaouri H, Martiny L (2006) The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. Biochimica et biophysica acta 1763(10):1125–1134CrossRefGoogle Scholar
  39. 39.
    Dutta D, Xu J, Kim JS, Dunn WA Jr, Leeuwenburgh C (2013) Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 9(3):328–344CrossRefGoogle Scholar
  40. 40.
    Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V et al (2016) Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 133(17):1668–1687CrossRefGoogle Scholar
  41. 41.
    Jangamreddy JR, Panigrahi S, Los MJ (2015) Monitoring of autophagy is complicated-salinomycin as an example. Biochimica et biophysica acta 1853(3):604–610CrossRefGoogle Scholar
  42. 42.
    White E (2007) Role of the metabolic stress responses of apoptosis and autophagy in tumor suppression. In: Ernst Schering Foundation symposium proceedings, pp 23–34Google Scholar
  43. 43.
    Zhang X, Chen W, Fan J, Wang S, Xian Z, Luan J, Li Y, Wang Y, Nan Y, Luo M et al (2018) Disrupting CD47-SIRPalpha axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis 39(5):689–699CrossRefGoogle Scholar
  44. 44.
    Denton D, Xu T, Kumar S (2015) Autophagy as a pro-death pathway. Immunol Cell Biol 93(1):35–42CrossRefGoogle Scholar
  45. 45.
    Guo B, Tam A, Santi SA, Parissenti AM (2016) Role of autophagy and lysosomal drug sequestration in acquired resistance to doxorubicin in MCF-7 cells. BMC Cancer 16(1):762CrossRefGoogle Scholar
  46. 46.
    White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316CrossRefGoogle Scholar
  47. 47.
    Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22(3):367–376CrossRefGoogle Scholar
  48. 48.
    Gewirtz DA (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res 74(3):647–651CrossRefGoogle Scholar
  49. 49.
    Cook KL, Soto-Pantoja DR (2017) “UPRegulation” of CD47 by the endoplasmic reticulum stress pathway controls anti-tumor immune responses. Biomark Res 5:26CrossRefGoogle Scholar
  50. 50.
    Cook KL, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Warri A, Hilakivi-Clarke L, Roberts DD, Clarke R (2016) Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res 76(19):5657–5670CrossRefGoogle Scholar
  51. 51.
    Starobinets H, Ye J, Broz M, Barry K, Goldsmith J, Marsh T, Rostker F, Krummel M, Debnath J (2016) Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J Clin Invest 126(12):4417–4429CrossRefGoogle Scholar
  52. 52.
    Kroemer G, Galluzzi L (2017) Autophagy-dependent danger signaling and adaptive immunity to poorly immunogenic tumors. Oncotarget 8(4):5686–5691CrossRefGoogle Scholar
  53. 53.
    Montico B, Lapenta C, Ravo M, Martorelli D, Muraro E, Zeng B, Comaro E, Spada M, Donati S, Santini SM et al (2017) Exploiting a new strategy to induce immunogenic cell death to improve dendritic cell-based vaccines for lymphoma immunotherapy. Oncoimmunology 6(11):e1356964CrossRefGoogle Scholar
  54. 54.
    Emens LA (2018) Breast cancer immunotherapy: facts and hopes. Clin Cancer Res 24(3):511–520CrossRefGoogle Scholar
  55. 55.
    Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu YX, Xu MM (2015) CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med 21(10):1209–1215CrossRefGoogle Scholar
  56. 56.
    Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, Gilkes DM, He J, Semenza GL (2015) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA 112(45):E6215–E6223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yismeilin R. Feliz-Mosquea
    • 1
  • Ashley A. Christensen
    • 1
  • Adam S. Wilson
    • 1
  • Brian Westwood
    • 1
  • Jasmina Varagic
    • 1
    • 5
  • Giselle C. Meléndez
    • 3
    • 4
    • 5
  • Anthony L. Schwartz
    • 6
  • Qing-Rong Chen
    • 7
  • Lesley Mathews Griner
    • 8
  • Rajarshi Guha
    • 8
  • Craig J. Thomas
    • 8
  • Marc Ferrer
    • 8
  • Maria J. Merino
    • 6
  • Katherine L. Cook
    • 1
    • 2
    • 4
    • 5
  • David D. Roberts
    • 6
  • David R. Soto-Pantoja
    • 1
    • 2
    • 4
    • 5
    Email author
  1. 1.Department of SurgeryWake Forest School of MedicineWinston-SalemUSA
  2. 2.Cancer BiologyWake Forest School of MedicineWinston-SalemUSA
  3. 3.Internal Medicine, Section on Cardiovascular Medicine, Pathology Section on Comparative MedicineWake Forest School of MedicineWinston-SalemUSA
  4. 4.Comprehensive Cancer CenterWake Forest School of MedicineWinston-SalemUSA
  5. 5.Cardiovascular Sciences CenterWake Forest School of MedicineWinston-SalemUSA
  6. 6.Laboratory of Pathology, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUSA
  7. 7.Center for Biomedical Informatics and Information Technology, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  8. 8.National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaUSA

Personalised recommendations