Advertisement

Breast Cancer Research and Treatment

, Volume 172, Issue 1, pp 221–230 | Cite as

Onco-metabolism: defining the prognostic significance of obesity and diabetes in women with brain metastases from breast cancer

  • Neal S. McCall
  • Brittany A. Simone
  • Minesh Mehta
  • Tingting Zhan
  • Kevin Ko
  • Kamila Nowak-Choi
  • Annaisabel Rese
  • Chantel Venkataraman
  • David W. Andrews
  • Pramila R. Anne’
  • Adam P. Dicker
  • Wenyin Shi
  • Nicole L. SimoneEmail author
Brief Report

Abstract

Purpose

Metabolic dysregulation has been implicated as a molecular driver of breast cancer in preclinical studies, especially with respect to metastases. We hypothesized that abnormalities in patient metabolism, such as obesity and diabetes, may drive outcomes in breast cancer patients with brain metastases.

Methods

We retrospectively identified 84 consecutive patients with brain metastases from breast cancer treated with intracranial radiation therapy. Radiation was delivered as whole-brain radiation to a median dose of 3000 cGy or stereotactic radiosurgery to a median dose of 2100 cGy. Kaplan Meier curves were generated for overall survival (OS) data and Mantel-Cox regression was performed to detect differences in groups.

Results

At analysis, 81 survival events had occurred and the median OS for the entire cohort was 21.7 months. Despite similar modified graded prognostic assessments, resection rates, and receptor status, BMI ≥ 25 kg/m2 (n = 45) was associated with decreased median OS (13.7 vs. 30.6 months; p < 0.001) and median intracranial progression-free survival (PFS) (7.4 vs. 10.9 months; p = 0.04) compared to patients with BMI < 25 kg/m2 (n = 39). Similar trends were observed among all three types of breast cancer. Patients with diabetes (n = 17) had decreased median OS (11.8 vs. 26.2 months; p < 0.001) and median intracranial PFS (4.5 vs. 10.3 months; p = 0.001) compared to non-diabetics (n = 67). On multivariate analysis, both BMI ≥ 25 kg/m2 [HR 2.35 (1.39–3.98); p = 0.002] and diabetes [HR 2.77 (1.454–5.274); p = 0.002] were associated with increased mortality.

Conclusions

Elevated BMI or diabetes may negatively impact both overall survival and local control in patients with brain metastases from breast cancer, highlighting the importance of the translational development of therapeutic metabolic interventions. Given its prognostic significance, BMI should be used as a stratification in future clinical trial design in this patient population.

Keywords

Breast cancer Brain metastases Radiation Obesity Diabetes Radiosurgery 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Funding

This study was funded in part by the National Cancer Institute through both R01-CA227479 and the Kimmel Cancer Center’s NCI Cancer Center Support Grant P30 CA056036.

Supplementary material

10549_2018_4880_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 KB)

References

  1. 1.
    Fox BD, Cheung VJ, Patel AJ et al (2011) Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 22:1–6.  https://doi.org/10.1016/j.nec.2010.08.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Rostami R, Mittal S, Rostami P et al (2016) Brain metastasis in breast cancer: a comprehensive literature review. J Neurooncol 127:407–414.  https://doi.org/10.1007/s11060-016-2075-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Park YH, Park MJ, Ji SH et al (2009) Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients. Br J Cancer 100:894–900.  https://doi.org/10.1038/sj.bjc.6604941 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sperduto PW, Kased N, Roberge D et al (2012) Effect of tumor subtype on survival and the graded prognostic assessment for patients with breast cancer and brain metastases. Int J Radiat Oncol Biol Phys 82:2111–2117.  https://doi.org/10.1016/j.ijrobp.2011.02.027 CrossRefPubMedGoogle Scholar
  5. 5.
    Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489CrossRefGoogle Scholar
  6. 6.
    Brown PD, Ballman KV, Cerhan JH et al (2017) Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 18:1049–1060.  https://doi.org/10.1016/S1470-2045(17)30441-2 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nam B-H, Kim SY, Han H-S et al (2008) Breast cancer subtypes and survival in patients with brain metastases. Breast Cancer Res 10:R20.  https://doi.org/10.1186/bcr1870 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dawood S, Broglio K, Esteva FJ et al (2009) Survival among women with triple receptor-negative breast cancer and brain metastases. Ann Oncol 20:621–627.  https://doi.org/10.1093/annonc/mdn682 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carmichael AR (2006) Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG 113:1160–1166.  https://doi.org/10.1111/j.1471-0528.2006.01021.x CrossRefPubMedGoogle Scholar
  10. 10.
    Pajares B, Pollán M, Martín M et al (2013) Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis. Breast Cancer Res 15:R105.  https://doi.org/10.1186/bcr3572 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Simone BA, Dan T, Palagani A et al (2016) Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle 15:2265–2274.  https://doi.org/10.1080/15384101.2016.1160982 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Arendt LM, McCready J, Keller PJ et al (2013) Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 73:6080–6093.  https://doi.org/10.1158/0008-5472.CAN-13-0926 CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang S, Wang R, Yan H et al (2016) MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1α-promoted glycolysis in non-small cell lung cancer cells. Mol Med Report 13:4101–4107.  https://doi.org/10.3892/mmr.2016.5010 CrossRefGoogle Scholar
  14. 14.
    Han T, Kang D, Ji D et al (2013) How does cancer cell metabolism affect tumor migration and invasion? Cell Adhes Migr 7:395–403.  https://doi.org/10.4161/cam.26345 CrossRefGoogle Scholar
  15. 15.
    Chen EI, Hewel J, Krueger JS et al (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–1486.  https://doi.org/10.1158/0008-5472.CAN-06-3137 CrossRefPubMedGoogle Scholar
  16. 16.
    Saleh AD, Simone BA, Palazzo J et al (2013) Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle 12:1955–1963.  https://doi.org/10.4161/cc.25016 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Witkiewicz AK, Dasgupta A, Sammons S et al (2010) Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther 10:135–143CrossRefGoogle Scholar
  18. 18.
    Subbiah IM, Lei X, Weinberg JS et al (2015) Validation and development of a modified breast graded prognostic assessment as a tool for survival in patients with breast cancer and brain metastases. J Clin Oncol 33:2239–2245.  https://doi.org/10.1200/JCO.2014.58.8517 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ahn HK, Lee S, Sohn JH et al (2011) Prognostic index for patients with brain metastases from breast cancer: a validation and refinement of the breast-specific graded prognostic assessment (GPA) index. J Clin Oncol 29:1097.  https://doi.org/10.1200/jco.2011.29.15_suppl.1097 CrossRefGoogle Scholar
  20. 20.
    Vassalotti JA, Centor R, Turner BJ et al (2016) Practical approach to detection and management of chronic kidney disease for the primary care clinician. Am J Med 129:153–162.e7.  https://doi.org/10.1016/j.amjmed.2015.08.025 CrossRefPubMedGoogle Scholar
  21. 21.
    Florido R, Smith KL, Cuomo KK, Russell SD (2017) Cardiotoxicity from human epidermal growth factor receptor-2 (HER2) targeted therapies. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.117.006915 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gorovets D, Rava P, Ebner DK et al (2015) Predictors for long-term survival free from whole brain radiation therapy in patients treated with radiosurgery for limited brain metastases. Front Oncol 5:110.  https://doi.org/10.3389/fonc.2015.00110 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kodack DP, Askoxylakis V, Ferraro GB et al (2015) Emerging strategies for treating brain metastases from breast cancer. Cancer Cell 27:163–175.  https://doi.org/10.1016/j.ccell.2015.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mazzarella L, Disalvatore D, Bagnardi V et al (2013) Obesity increases the incidence of distant metastases in oestrogen receptor-negative human epidermal growth factor receptor 2-positive breast cancer patients. Eur J Cancer 49:3588–3597.  https://doi.org/10.1016/j.ejca.2013.07.016 CrossRefPubMedGoogle Scholar
  25. 25.
    Widschwendter P, Friedl TW, Schwentner L et al (2015) The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial. Breast Cancer Res 17:129.  https://doi.org/10.1186/s13058-015-0639-3 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wright C, Simone NL (2016) Obesity and tumor growth: inflammation, immunity, and the role of a ketogenic diet. Curr Opin Clin Nutr Metab Care 19:294–299.  https://doi.org/10.1097/MCO.0000000000000286 CrossRefPubMedGoogle Scholar
  27. 27.
    Champ CE, Baserga R, Mishra MV et al (2013) Nutrient restriction and radiation therapy for cancer treatment: when less is more. Oncologist 18:97–103.  https://doi.org/10.1634/theoncologist.2012-0164 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ciminera AK, Jandial R, Termini J (2017) Metabolic advantages and vulnerabilities in brain metastases. Clin Exp Metastasis.  https://doi.org/10.1007/s10585-017-9864-8 CrossRefPubMedGoogle Scholar
  29. 29.
    Mauro L, Naimo GD, Ricchio E et al (2015) Cross-talk between adiponectin and IGF-IR in breast cancer. Front Oncol 5:157.  https://doi.org/10.3389/fonc.2015.00157 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li P, Veldwijk MR, Zhang Q et al (2013) Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells. BMC Cancer 13:297.  https://doi.org/10.1186/1471-2407-13-297 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Effect of elevated BMI on radiation toxicity in early stage breast cancer patients. 2016 ASCO Annual Meeting|Abstracts|Meeting Library. http://meetinglibrary.asco.org/content/165881-176. Accessed 16 May 2017
  32. 32.
    Stokes TB, Niranjan A, Kano H et al (2015) White matter changes in breast cancer brain metastases patients who undergo radiosurgery alone compared to whole brain radiation therapy plus radiosurgery. J Neurooncol 121:583–590.  https://doi.org/10.1007/s11060-014-1670-4 CrossRefPubMedGoogle Scholar
  33. 33.
    Kullmann S, Callaghan MF, Heni M et al (2016) Specific white matter tissue microstructure changes associated with obesity. Neuroimage 125:36–44.  https://doi.org/10.1016/j.neuroimage.2015.10.006 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Szerlip N, Rutter C, Ram N et al (2011) Factors impacting volumetric white matter changes following whole brain radiation therapy. J Neurooncol 103:111–119.  https://doi.org/10.1007/s11060-010-0358-7 CrossRefPubMedGoogle Scholar
  35. 35.
    Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044.  https://doi.org/10.1016/S1470-2045(09)70263-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Tsao M, Xu W, Sahgal A (2012) A meta-analysis evaluating stereotactic radiosurgery, whole-brain radiotherapy, or both for patients presenting with a limited number of brain metastases. Cancer 118:2486–2493.  https://doi.org/10.1002/cncr.26515 CrossRefPubMedGoogle Scholar
  37. 37.
    Soliman H, Das S, Larson DA, Sahgal A (2016) Stereotactic radiosurgery (SRS) in the modern management of patients with brain metastases. Oncotarget 7:12318–12330.  https://doi.org/10.18632/oncotarget.7131 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Richardson LC, Pollack LA (2005) Therapy insight: influence of type 2 diabetes on the development, treatment and outcomes of cancer. Nat Clin Pract Oncol 2:48–53.  https://doi.org/10.1038/ncponc0062 CrossRefPubMedGoogle Scholar
  39. 39.
    GBD (2015) Collaborators O, Afshin A, Forouzanfar MH et al. (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27.  https://doi.org/10.1056/NEJMoa1614362 CrossRefGoogle Scholar
  40. 40.
    Sonnenblick A, Agbor-Tarh D, Bradbury I et al (2017) Impact of diabetes, insulin, and metformin use on the outcome of patients with human epidermal growth factor receptor 2-positive primary breast cancer: analysis from the ALTTO phase III randomized trial. J Clin Oncol 35:1421–1429.  https://doi.org/10.1200/JCO.2016.69.7722 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bjarnadottir O, Romero Q, Bendahl P-O et al (2013) Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res Treat 138:499–508.  https://doi.org/10.1007/s10549-013-2473-6 CrossRefPubMedGoogle Scholar
  42. 42.
    Ahern TP, Lash TL, Damkier P et al (2014) Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol 15:e461–e468.  https://doi.org/10.1016/S1470-2045(14)70119-6 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lv M, Zhu X, Wang H et al (2014) Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS ONE 9:e115147.  https://doi.org/10.1371/journal.pone.0115147 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cleary MP, Grossmann ME (2011) The manner in which calories are restricted impacts mammary tumor cancer prevention. J Carcinog 10:21.  https://doi.org/10.4103/1477-3163.85181 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen Y, Ling L, Su G et al (2016) Effect of intermittent versus chronic calorie restriction on tumor incidence: a systematic review and meta-analysis of animal studies. Sci Rep 6:33739.  https://doi.org/10.1038/srep33739 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Longo VD, Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31:89–98.  https://doi.org/10.1016/j.tips.2009.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Thomas Jefferson University Hospitals (2016) Caloric restriction in treating patients with stage 0–I breast cancer undergoing surgery and radiation therapy (CAREFOR). In: Clinical Trials.Gov. https://clinicaltrials.gov/ct2/show/NCT01819233. Accessed 15 May 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Neal S. McCall
    • 1
  • Brittany A. Simone
    • 1
  • Minesh Mehta
    • 2
  • Tingting Zhan
    • 3
  • Kevin Ko
    • 1
  • Kamila Nowak-Choi
    • 4
  • Annaisabel Rese
    • 5
  • Chantel Venkataraman
    • 1
  • David W. Andrews
    • 1
  • Pramila R. Anne’
    • 1
  • Adam P. Dicker
    • 1
  • Wenyin Shi
    • 1
  • Nicole L. Simone
    • 1
    Email author
  1. 1.Department of Radiation OncologySidney Kimmel Medical College at Thomas Jefferson University, Sidney Kimmel Cancer CenterPhiladelphiaUSA
  2. 2.Department of Radiation OncologyMiami Cancer Institute at Baptist Health South FloridaMiamiUSA
  3. 3.Division of BiostatisticsSidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUSA
  4. 4.MedStar Franklin Square Medical CenterRosedaleUSA
  5. 5.University of Naples Federico IINaplesItaly

Personalised recommendations