Breast Cancer Research and Treatment

, Volume 171, Issue 1, pp 173–180 | Cite as

Uptake of BRCA 1/2 and oncotype DX testing by medical and surgical oncologists

  • Yonina R. Murciano-GoroffEmail author
  • Anne Marie McCarthy
  • Mirar N. Bristol
  • Peter Groeneveld
  • Susan M. Domchek
  • U. Nkiru Motanya
  • Katrina Armstrong



The diffusion of genomic testing is critical to the success of precision medicine, but there is limited information on oncologists’ uptake of genetic technology. We aimed to assess the frequency with which medical oncologists and surgeons order BRCA 1/2 and Oncotype DX testing for breast cancer patients.


We surveyed 732 oncologists and surgeons treating breast cancer patients. Physicians were from Florida, New York, New Jersey, and Pennsylvania, and were listed in the 2010 AMA Masterfile or identified by patients.


80.6% of providers ordered BRCA 1/2 testing at least sometimes and 85.4% ordered Oncotype DX (p = 0.01). More frequent ordering of BRCA 1/2 was associated with more positive attitudes toward genetic innovation (OR 1.14, p = 0.001), a belief that testing was likely to be covered by patients’ insurance (OR 2.84, p < 0.001), and more frequent ordering of Oncotype DX testing (OR 8.69, p < 0.001). More frequent use of Oncotype DX was associated with a belief that testing was likely to be covered by insurance (OR 7.33, p < 0.001), as well as with more frequent ordering of BRCA 1/2 testing (OR 9.48, p < 0.001).


Nearly one in five providers never or rarely ever ordered BRCA 1/2 testing for their breast cancer patients, and nearly 15% never or rarely ever ordered Oncotype DX. Less frequent ordering of BRCA 1/2 is associated with less frequent use of Oncotype DX testing, and vice versa. Those who do not order BRCA 1/2 testing report less positive attitudes toward genetic innovation. Further education of this subset of providers regarding the benefits of precision medicine may enable more rapid diffusion of genetic technology.


Breast cancer BRCA1/2 testing Oncotype DX Precision medicine 



This work was supported by the National Cancer Institute of the National Institutes of Health, Grant 5-R01-CA133004- 3.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    McDermott U, Downing JR, Stratton MR (2011) Genomics and the continuum of cancer care. N Engl J Med. 364:340 – 50.CrossRefPubMedGoogle Scholar
  2. 2.
    McCarthy AM, Armstrong K (2014) The role of testing for BRCA1 and BRCA2 mutations in cancer prevention. JAMA Intern Med 174:1023–1024. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235 – 44. Scholar
  4. 4.
    Kauff ND, Satagopan JM, Robson ME et al (2002) Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346:1609–1615. CrossRefPubMedGoogle Scholar
  5. 5.
    Domchek SM, Friebel TM, Singer CF et al (2010) Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. Jama 304:967 – 75. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sparano JA, Gray RJ, Makower DF et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373:2005–2014. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. CrossRefPubMedGoogle Scholar
  8. 8.
    Wideroff L, Freedman AN, Olson L et al (2003) Physician use of genetic testing for cancer susceptibility: results of a national survey. Cancer Epidemiol Biomarkers Prev 12:295–303PubMedGoogle Scholar
  9. 9.
    Gingras I, Sonnenblick A, de Azambuja E et al (2016) The current use and attitudes towards tumor genome sequencing in breast cancer. Sci Rep 6:22517. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Guth AA, Fineberg S, Fei K, Franco R, Bickell NA (2013) Utilization of Oncotype DX in an Inner City Population: Race or Place? Int J Breast Cancer https://doiorg/2013:653805Google Scholar
  11. 11.
    O’Neill SC, Isaacs C, Chao C et al (2015) Adoption of gene expression profiling for breast cancer in us oncology practice for women younger than 65 years. J Natl Compr Canc Netw 13:1216–1224. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329–1333. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mavaddat N, Peock S, Frost D et al (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105:812 – 22. CrossRefPubMedGoogle Scholar
  15. 15.
    King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646. CrossRefPubMedGoogle Scholar
  16. 16.
    De Felice F, Marchetti C, Musella A et al (2015) Bilateral risk-reduction mastectomy in BRCA1 and BRCA2 mutation carriers: a meta-analysis. Ann Surg Oncol. CrossRefPubMedGoogle Scholar
  17. 17.
    Marchetti C, De Felice F, Palaia I et al (2014) Risk-reducing salpingo-oophorectomy: a meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA 1 and BRCA 2 mutation carriers. BMC Womens Health 14:150. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Armstrong K, Schwartz JS, Randall T et al (2004) Hormone replacement therapy and life expectancy after prophylactic oophorectomy in women with BRCA1/2 mutations: a decision analysis. J Clin Oncol 22:1045–1054. CrossRefPubMedGoogle Scholar
  19. 19.
    Nelson HD, Smith ME, Griffin JC et al (2013) Use of medications to reduce risk for primary breast cancer: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 158:604 – 14.CrossRefPubMedGoogle Scholar
  20. 20.
    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines ®) (2012) Breast Cancer. Version 3.2012. NCCN.orgGoogle Scholar
  21. 21.
    Cronin M, Sangli C, Liu ML et al (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53:1084–1091. CrossRefPubMedGoogle Scholar
  22. 22.
    Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734. CrossRefPubMedGoogle Scholar
  23. 23.
    Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287 – 312. CrossRefPubMedGoogle Scholar
  24. 24.
    Potosky AL, O’Neill SC, Isaacs C et al (2015) Population-based study of the effect of gene expression profiling on adjuvant chemotherapy use in breast cancer patients under the age of 65 years. Cancer 121:4062–4070. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines ®) (2015) Genetic/ familial high-risk assessment: breast and ovarian. Version 1.2015. NCCN.orgGoogle Scholar
  26. 26.
    Moyer VA (2014) Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 160:271 – 81.CrossRefPubMedGoogle Scholar
  27. 27.
    Samphao S, Wheeler AJ, Rafferty E et al (2009) Diagnosis of breast cancer in women age 40 and younger: delays in diagnosis result from underuse of genetic testing and breast imaging. Am J Surg. 198:538 – 43.PubMedCrossRefGoogle Scholar
  28. 28.
    Bellcross CA, Kolor K, Goddard KA, Coates RJ, Reyes M, Khoury MJ (2011) Awareness and utilization of BRCA1/2 testing among U.S. primary care physicians. Am J Prev Med 40:61 – 6. CrossRefPubMedGoogle Scholar
  29. 29.
    Sabatino SA, McCarthy EP, Phillips RS, Burns RB (2007) Breast cancer risk assessment and management in primary care: provider attitudes, practices, and barriers. Cancer Detect Prev. 31:375 – 83.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Riel E, Warlam-Rodenhuis CC, Verhoef S, Rutgers EJTH., Ausems MGEM. (2010) BRCA testing of breast cancer patients: medical specialists’ referral patterns, knowledge and attitudes to genetic testing. Eur J Cancer Care (Engl) 19:369 – 76. CrossRefGoogle Scholar
  31. 31.
    Cragun D, Weidner A, Lewis C, Bonner D, Kim J, Vadaparampil ST, Pal T (2017) Racial disparities in BRCA testing and cancer risk management across a population-based sample of young breast cancer survivors. Cancer 123:2497–2505. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cragun D, Scherr C, Camperlengo L, Vadaparampil ST, Pal T (2016) Evolution of Hereditary Breast Cancer Genetic Services: Are Changes Reflected in the Knowledge and Clinical Practices of Florida Providers? Genet Test Mol Biomarkers 20:569–578. CrossRefPubMedGoogle Scholar
  33. 33.
    Kurian AW, Griffith KA, Hamilton AS, Ward KC, Morrow M, Katz SJ, Jagsi R (2017) Genetic testing and counseling among patients with newly diagnosed breast cancer. Jama 317:531–534. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lund MJ, Mosunjac M, Davis KM et al (2012) 21-Gene recurrence scores: racial differences in testing, scores, treatment, and outcome. Cancer 118:788 – 96. CrossRefPubMedGoogle Scholar
  35. 35.
    Hassett MJ, Silver SM, Hughes ME et al (2012) Adoption of gene expression profile testing and association with use of chemotherapy among women with breast cancer. J Clin Oncol 30:2218–2226. Journal of Clinical Oncology 30 no. 18 (June 2012) 2218–2226.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dinan MA, Mi X, Reed SD, Hirsch BR, Lyman GH, Curtis LH (2015) Initial trends in the use of the 21-gene recurrence score assay for patients With breast cancer in the medicare population, 2005–2009. JAMA Oncol. 1:158–1661:158 – 66. CrossRefPubMedGoogle Scholar
  37. 37.
    Gray SW, Park ER, Najita J et al (2016) Oncologists’ and cancer patients’ views on whole-exome sequencing and incidental findings: results from the CanSeq study. Genet Med. PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Trivers KF, Baldwin LM, Miller JW, Matthews B, Andrilla CHA, Lishner DM, Goff BA (2011) Reported referral for genetic counseling or BRCA 1/2 testing among United States physicians: a vignette-based study. Cancer 117:5334–5343. CrossRefPubMedGoogle Scholar
  39. 39.
    Levy DE, Garber JE, Shields AE (2009) Guidelines for genetic risk assessment of hereditary breast and ovarian cancer: early disagreements and low utilization. J Gen Intern Med 24:822–828. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    McCarthy AM, Bristol M, Fredricks T et al (2013) Are physician recommendations for BRCA1/2 testing in patients with breast cancer appropriate? A population-based study. Cancer. 119:3596 – 603.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Armstrong K, Micco E, Carney A, Stopfer J, Putt M (2005) Racial differences in the use of BRCA1/2 testing among women with a family history of breast or ovarian cancer. JAMA 293:1729–1736. CrossRefPubMedGoogle Scholar
  42. 42.
    Armstrong K, Weiner J, Weber B, Asch DA (2003) Early adoption of BRCA1/2 testing: who and why. Genet Med. 5:92–98. CrossRefPubMedGoogle Scholar
  43. 43.
    Armstrong K, Calzone K, Stopfer J, Ftizgerald G, Coyne J, Weber B (2002) Factors associated with decisions about clinical BRCA1/2 testing. Cancer Epidemiol Biomarkers Prev 9:1251–1254Google Scholar
  44. 44.
    McCarthy AM, Bristol M, Domchek SM et al (2016) Health Care Segregation, Physician Recommendation, and Racial Disparities in BRCA1/2 Testing Among Women With Breast Cancer. J Clin Oncol 34:2610–2618. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    The American Association for Public Opinion Research. (2011). Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys. 7th edn. AAPORGoogle Scholar
  46. 46.
    Bach PB, Pham HH, Schrag D, Tate RC, Hargraves JL (2004) Primary care physicians who treat blacks and whites. N Engl J Med. 351:575–84. CrossRefPubMedGoogle Scholar
  47. 47.
    Groeneveld PW, Sonnad SS, Lee AK, Asch DA, Shea JE (2006) Racial differences in attitudes toward innovative medical technology. J Gen Intern Med. 21:559 – 63.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Goldsmith RE (1990) The validity of a scale to measure global innovativeness. J Appl Bus Res 7:89–97. CrossRefGoogle Scholar
  49. 49.
    Hurt HT, Joseph K, Cook CD (1977) Scales for the measurement of innovativeness. Human Commun Res 4:58–65. CrossRefGoogle Scholar
  50. 50.
    Flynn LR, Goldsmith RE (1993) A validation of the Goldsmith and Hofacker innovativeness scale. Educ Psychol Measur 53:1105–1116. CrossRefGoogle Scholar
  51. 51.
    Goldsmith RE, Eastman JK (1995) The generality-specificity issue in consumer innovativeness research. Technovation 15:601–612. CrossRefGoogle Scholar
  52. 52.
    Agarwal R, Prasad J (1998) A conceptual and operational definition of personal innovativeness in the domain of information technology. Inf Syst Res 9:204–215. CrossRefGoogle Scholar
  53. 53.
    DeSantis C, Ma J, Bryan L, Jemal A (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64:52–62. CrossRefPubMedGoogle Scholar
  54. 54.
    Sweet KM, Bradley TL, Westman JA (2002) Identification and referral of families at high risk for cancer susceptibility. J Clin Oncol. 20:528 – 37.PubMedCrossRefGoogle Scholar
  55. 55.
    Chambers DW (2001) Technology innovation. J Am Coll Dent 68:41 – 5PubMedGoogle Scholar
  56. 56.
    Doksum T, Bernhardt BA, Holtzman NA (2003) Does knowledge about the genetics of breast cancer differ between nongeneticist physicians who do or do not discuss or order BRCA testing?. Genet Med 5:99–105. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineMassachusetts General HospitalBostonUSA
  2. 2.Department of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  3. 3.University of Pennsylvania Abramson Cancer CenterPhiladelphiaUSA

Personalised recommendations