Breast Cancer Research and Treatment

, Volume 170, Issue 2, pp 293–302 | Cite as

The role of programmed death ligand-1 and tumor-infiltrating lymphocytes in breast cancer overexpressing HER2 gene

  • Yanchun Li
  • Mateusz Opyrchal
  • Song Yao
  • Xuan Peng
  • Li Yan
  • Hossam Jabbour
  • Thaer Khoury
Clinical trial



The purpose of the study is to investigate the prognostic significance of programmed death ligand-1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) in HER2+ breast cancer (BC).


HER2+ BC cases ( = 191) were collected between 1996 and 2013. Tissue microarray (TMA) slides were stained with two clones of PD-L1 antibodies (28-8 and 22C3) and the percentage of positive membranous staining was scored. TILs of the full sections were also scored using percentage scale.


Clone 28-8 had expression in ≥ 1% of the tumor cells in 25.7% of the cases, while clone 22C3 in ≥ 1% of the tumor cells was expressed in 11.5% of the cases. In the multivariate analysis, higher expression of PD-L1 (clone 28-8) in tumor correlated with lower risk of tumor recurrence, with HR of 0.4 (= 0.033). Higher level of TILs (> 15%) predicts better overall survival (OS) in all patients with HR of 0.35 ( = 0.0046). In the group of patients who were treated with trastuzumab-based adjuvant chemotherapy, lower PD-L1 (clone 28-8) expression in TILs correlated with tumor recurrence ( = 0.034). In the group of patients who were treated with non-trastuzumab-based adjuvant chemotherapy, lower TILs and lower PD-L1 (clone 28-8) expression in tumor had borderline statistical significance in association with tumor recurrence ( = 0.064 and 0.083, respectively). In the group of patients who were treated with trastuzumab-based adjuvant chemotherapy, PD-L1 or TILs was not statistically significant to predict 5-year survival. In the group of patients who were treated with non-trastuzumab-based adjuvant chemotherapy, low TILs (= 0.009) correlated with 5-year death due to disease.


We conclude that PD-L1 may have prognostic significance in HER2+ BCs.


PD-L1 Tumor-infiltrating lymphocytes HER2 positive breast cancer 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Data archiving is not mandated but data will be made available on reasonable request.


  1. 1.
    Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMedGoogle Scholar
  2. 2.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol 27:16–25CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, NY) 313(5795):1960–1964CrossRefGoogle Scholar
  4. 4.
    Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L et al (2015) Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N Engl J Med 372(21):2018–2028CrossRefPubMedGoogle Scholar
  6. 6.
    Drake CG, Bivalacqua TJ, Hahn NM (2016) Programmed cell death ligand-1 blockade in urothelial bladder cancer: to select or not to select. J Clin Oncol 34(26):3115–3116CrossRefPubMedGoogle Scholar
  7. 7.
    Okazaki T, Honjo T (2006) The PD-1–PD-L pathway in immunological tolerance. Trends Immunol 27(4):195–201CrossRefPubMedGoogle Scholar
  8. 8.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC et al (2000) Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefPubMedGoogle Scholar
  10. 10.
    Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14(4):847–856CrossRefPubMedGoogle Scholar
  11. 11.
    Ghebeh H, Mohammed S, Al-Omair A, Qattan A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Amer SB, Tulbah A et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia (New York, NY) 8(3):190–198CrossRefGoogle Scholar
  12. 12.
    Cimino-Mathews A, Thompson E, Taube JM, Ye X, Lu Y, Meeker A, Xu H, Sharma R, Lecksell K, Cornish TC et al (2016) PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 47(1):52–63CrossRefPubMedGoogle Scholar
  13. 13.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 8(8):793–800CrossRefPubMedGoogle Scholar
  14. 14.
    Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127137CrossRefGoogle Scholar
  15. 15.
    Weinstock M, McDermott D (2015) Targeting PD-1/PD-L1 in the treatment of metastatic renal cell carcinoma. Ther Adv Urol 7(6):365–377CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K et al (2012) Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB et al (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med 373(17):1627–1639CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jorgensen JT (2016) Companion diagnostic assays for PD-1/PD-L1 checkpoint inhibitors in NSCLC. Expert Rev Mol Diagn 16(2):131–133CrossRefPubMedGoogle Scholar
  20. 20.
    Wimberly H, Brown JR, Schalper K, Haack H, Silver MR, Nixon C, Bossuyt V, Pusztai L, Lannin DR, Rimm DL (2015) PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res 3(4):326–332CrossRefPubMedGoogle Scholar
  21. 21.
    Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ et al (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32(27):2959–2966CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Khoury T, Nagrale V, Opyrchal M, Peng X, Wang D, Yao S (2017) Prognostic Significance of Stromal Versus Intratumoral Infiltrating Lymphocytes in Different Subtypes of Breast Cancer Treated With Cytotoxic Neoadjuvant Chemotherapy. Appl Immunohistochem Mol Morphol. CrossRefPubMedGoogle Scholar
  23. 23.
    Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271CrossRefPubMedGoogle Scholar
  24. 24.
    Muenst S, Schaerli AR, Gao F, Daster S, Trella E, Droeser RA, Muraro MG, Zajac P, Zanetti R, Gillanders WE et al (2014) Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 146(1):15–24CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, Rimm DL (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 20(10):2773–2782CrossRefPubMedGoogle Scholar
  26. 26.
    Baptista MZ, Sarian LO, Derchain SF, Pinto GA, Vassallo J (2016) Prognostic significance of PD-L1 and PD-L2 in breast cancer. Human Pathol 47(1):78–84CrossRefGoogle Scholar
  27. 27.
    Hasan A, Ghebeh H, Lehe C, Ahmad R, Dermime S (2011) Therapeutic targeting of B7-H1 in breast cancer. Expert Opin Ther Targ 15(10):1211–1225CrossRefGoogle Scholar
  28. 28.
    Zawlik I, Gablo N, Szymanska B, Pawlowska Z, Chudobinski C, Chalubinska-Fendler J, Morawiec Z, Zielinska-Blizniewska H, Morawiec-Sztandera A, Kolacinska A (2016) Immune checkpoints in aggressive breast cancer subtypes. Neoplasma 63(5):768–773CrossRefPubMedGoogle Scholar
  29. 29.
    Adams S, Diamond J, Hamilton E, Pohlmann P, Tolaney S, Molinero L, Zou W, Liu B, Waterkamp D, Funke R et al (2016) Abstract P2-11-06: safety and clinical activity of atezolizumab (anti-PDL1) in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer. Cancer Res 76(4 Supplement):2–11Google Scholar
  30. 30.
    Bertucci F, Finetti P, Birnbaum D, Mamessier E (2016) The PD1/PDL1 axis, a promising therapeutic target in aggressive breast cancers. OncoImmunology 5(3):e1085148CrossRefPubMedGoogle Scholar
  31. 31.
    Barok M, Isola J, Palyi-Krekk Z, Nagy P, Juhasz I, Vereb G, Kauraniemi P, Kapanen A, Tanner M, Vereb G et al (2007) Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 6(7):2065–2072CrossRefPubMedGoogle Scholar
  32. 32.
    Denkert C, Darb-Esfahani S, Loibl S, Anagnostopoulos I, Johrens K (2011) Anti-cancer immune response mechanisms in neoadjuvant and targeted therapy. Semin Immunopathol 33(4):341–351CrossRefPubMedGoogle Scholar
  33. 33.
    Savas P, Caramia F, Teo ZL, Loi S (2014) Oncogene addiction and immunity: clinical implications of tumour infiltrating lymphocytes in breast cancers overexpressing the HER2/neu oncogene. Curr Opin Oncol 26(6):562–567CrossRefPubMedGoogle Scholar
  34. 34.
    Perez EA, Ballman KV, Tenner KS, Thompson EA, Badve SS, Bailey H, Baehner FL (2016) Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol 2(1):56–64CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P et al (2014) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 138(2):241–256CrossRefPubMedGoogle Scholar
  36. 36.
    Onitilo AA, Engel JM, Greenlee RT, Mukesh BN (2009) Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res 7(1–2):4–13CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410CrossRefPubMedGoogle Scholar
  38. 38.
    Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17(6):1471–1474CrossRefPubMedGoogle Scholar
  39. 39.
    Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481CrossRefPubMedGoogle Scholar
  40. 40.
    Ghebeh H, Tulbah A, Mohammed S, Elkum N, Bin Amer SM, Al-Tweigeri T, Dermime S (2007) Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer 121(4):751–758CrossRefPubMedGoogle Scholar
  41. 41.
    Denkert C, Minckwitz GV, Brase JC, Sinn BV, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2–positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991CrossRefPubMedGoogle Scholar
  42. 42.
    Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J et al (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol 1(4):448–454CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Denkert C, Loibl S, Salat C, Sinn B, Schem C, Endris V, Klare P, Schmitt W, Blohmer J-U, Weichert W et al (2013) Abstract S1-06: increased tumor-associated lymphocytes predict benefit from addition of carboplatin to neoadjuvant therapy for triple-negative and HER2-positive early breast cancer in the GeparSixto trial (GBG 66). Cancer Res 73(24 Supplement):S1–S6CrossRefGoogle Scholar
  44. 44.
    Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E, Kiermaier A, Swain SM, Baselga J, Michiels S et al (2017) Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol 18(1):52–62CrossRefPubMedGoogle Scholar
  45. 45.
    Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C et al (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550CrossRefPubMedGoogle Scholar
  46. 46.
    Bianchini G, Gianni L (2014) The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol 15(2):e58–e68CrossRefPubMedGoogle Scholar
  47. 47.
    Muntasell A, Cabo M, Servitja S, Tusquets I, Martínez-García M, Rovira A, Rojo F, Albanell J, López-Botet M (2017) Interplay between natural killer cells and Anti-HER2 antibodies: perspectives for breast cancer immunotherapy. Front Immunol 8:1544CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, Teng MW, Smyth MJ (2011) Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Nat Acad Sci USA 108(17):7142–7147CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xu H, Lin G, Huang C, Zhu W, Miao Q, Fan X, Wu B, Zheng X, Lin X, Jiang K et al (2017) Assessment of concordance between 22C3 and SP142 immunohistochemistry assays regarding PD-L1 expression in non-small cell lung cancer. Sci Rep 7:16956CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyRoswell Park Cancer InstituteBuffaloUSA
  2. 2.Department of MedicineRoswell Park Cancer InstituteBuffaloUSA
  3. 3.Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloUSA
  4. 4.Department of BioinformaticsRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations