Advertisement

Breast Cancer Research and Treatment

, Volume 169, Issue 2, pp 295–304 | Cite as

Lymphovascular invasion after neoadjuvant chemotherapy is strongly associated with poor prognosis in breast carcinoma

  • Anne-Sophie Hamy
  • Giang-Thanh Lam
  • Enora Laas
  • Lauren Darrigues
  • Thomas Balezeau
  • Julien Guerin
  • Alain Livartowski
  • Benjamin Sadacca
  • Jean-Yves Pierga
  • Anne Vincent-Salomon
  • Florence Coussy
  • Veronique Becette
  • Hélène Bonsang-Kitzis
  • Roman Rouzier
  • Jean-Guillaume Feron
  • Gabriel Benchimol
  • Marick Laé
  • Fabien ReyalEmail author
Clinical study

Abstract

Purpose

Few studies evaluated the prognostic value of the presence of lymphovascular invasion (LVI) after neoadjuvant chemotherapy (NAC) for breast cancer (BC).

Methods

The association between LVI and survival was evaluated in a cohort of BC patients treated by NAC between 2002 and 2011. Five post-NAC prognostic scores (ypAJCC, RCB, CPS, CPS + EG and Neo-Bioscore) were evaluated and compared with or without the addition of LVI.

Results

Out of 1033 tumors, LVI was present on surgical specimens in 29.2% and absent in 70.8% of the cases. Post-NAC LVI was associated with impaired disease-free survival (DFS) (HR 2.54; 95% CI 1.96–3.31; P < 0.001), and the magnitude of this effect depended on BC subtype (Pinteraction = 0.003), (luminal BC: HR 1.83; P = 0.003; triple negative BC: HR 3.73; P < 0.001; HER2-positive BC: HR 6.21; P < 0.001). Post-NAC LVI was an independent predictor of local relapse, distant metastasis, and overall survival; and increased the accuracy of all five post-NAC prognostic scoring systems.

Conclusions

Post-NAC LVI is a strong independent prognostic factor that: (i) should be systematically reported in pathology reports; (ii) should be used as stratification factor after NAC to propose inclusion in second-line trials or adjuvant treatment; (iii) should be included in post-NAC scoring systems.

Keywords

Breast carcinoma Lymphovascular invasion Neoadjuvant chemotherapy Prognostic scores 

Abbreviations

AIC

Akaike information criterion

BC

Breast cancer

BMI

Body mass index (kg/m2)

DCIS

Ductal carcinoma in situ

DFS

Disease-free survival

ER

Oestrogen receptor

LVI

Lymphovascular invasion

MFS

Metastasis-free survival

NAC

Neoadjuvant chemotherapy

NPRI

Nottingham Clinico-Pathological Response Index

NST

No specific type

OS

Overall survival

pCR

Pathological complete response

PR

Progesterone receptor

RCB

Residual cancer burden

RFS

Recurrence-free survival

TNBC

Triple negative breast cancer

Notes

Acknowledgements

We thank Roche* France for financial support for construction of the Institut Curie neoadjuvant database (NEOREP). The funding source had no role in data analysis and interpretation neither in writing the manuscript. AS Hamy was supported by an ITMO-INSERM-AVIESAN cancer translational research grant.

Funding

This work was supported by the Site de Recherche Intégrée en Cancérologie/Institut National du Cancer (INCa-DGOS-4654); and Grant ARC Fundation 2013 (SL220130607090).

Compliance with ethical standards

Conflict of interest

This report describes an original work and is not under consideration by any other journal. All authors approved the manuscript and this submission. There are no conflicts of interest.

Supplementary material

10549_2017_4610_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1270 kb)
10549_2017_4610_MOESM2_ESM.xlsx (60 kb)
Supplementary material 2 (XLSX 59 kb)

References

  1. 1.
    Lee AHS, Pinder SE, Macmillan RD et al (2006) Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur J Cancer 42:357–362.  https://doi.org/10.1016/j.ejca.2005.10.021 CrossRefPubMedGoogle Scholar
  2. 2.
    Rakha EA, Martin S, Lee AHS et al (2012) The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer 118:3670–3680.  https://doi.org/10.1002/cncr.26711 CrossRefPubMedGoogle Scholar
  3. 3.
    Freedman GM, Li T, Polli LV et al (2012) Lymphatic space invasion is not an independent predictor of outcomes in early stage breast cancer treated by breast-conserving surgery and radiation. Breast J 18:415–419.  https://doi.org/10.1111/j.1524-4741.2012.01271.x CrossRefPubMedGoogle Scholar
  4. 4.
    Ravdin PM (1996) A computer program to assist in making breast cancer adjuvant therapy decisions. Semin Oncol 23:43–50PubMedGoogle Scholar
  5. 5.
    Michaelson JS, Chen LL, Bush D et al (2011) Improved web-based calculators for predicting breast carcinoma outcomes. Breast Cancer Res Treat 128:827–835.  https://doi.org/10.1007/s10549-011-1366-9 CrossRefPubMedGoogle Scholar
  6. 6.
    Wishart GC, Azzato EM, Greenberg DC et al (2010) PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res 12:R1.  https://doi.org/10.1186/bcr2464 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    NCCN Evidence Blocks, TM (2016) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) - Breast Cancer., 2016Google Scholar
  8. 8.
    Coates AS, Winer EP, Goldhirsch A et al (2015) Tailoring therapies–improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol Off J Eur Soc Med Oncol 26:1533–1546.  https://doi.org/10.1093/annonc/mdv221 CrossRefGoogle Scholar
  9. 9.
    Senkus E, Kyriakides S, Ohno S et al (2015) Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26:v8–v30.  https://doi.org/10.1093/annonc/mdv298 CrossRefPubMedGoogle Scholar
  10. 10.
    Liu YL, Saraf A, Lee SM et al (2016) Lymphovascular invasion is an independent predictor of survival in breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat 157:555–564.  https://doi.org/10.1007/s10549-016-3837-5 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Edge S, Byrd D, Compton C, et al (2009) American Joint Committee on Cancer (AJCC) Cancer Staging Manual, 7th ednGoogle Scholar
  12. 12.
    Symmans WF, Peintinger F, Hatzis C et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25:4414–4422.  https://doi.org/10.1200/JCO.2007.10.6823 CrossRefPubMedGoogle Scholar
  13. 13.
    Jeruss JS, Mittendorf EA, Tucker SL et al (2008) Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J Clin Oncol 26:246–252.  https://doi.org/10.1200/JCO.2007.11.5352 CrossRefPubMedGoogle Scholar
  14. 14.
    Mittendorf EA, Vila J, Tucker SL et al (2016) The neo-bioscore update for staging breast cancer treated with neoadjuvant chemotherapy: incorporation of prognostic biologic factors into staging after treatment. JAMA Oncol 2:929–936.  https://doi.org/10.1001/jamaoncol.2015.6478 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  16. 16.
    Abdel-Fatah TM, Ball G, Lee AHS et al (2015) Nottingham Clinico-Pathological Response Index (NPRI) after neoadjuvant chemotherapy (Neo-ACT) accurately predicts clinical outcome in locally advanced breast cancer. Clin Cancer Res 21:1052–1062.  https://doi.org/10.1158/1078-0432.CCR-14-0685 CrossRefPubMedGoogle Scholar
  17. 17.
    Choi MK, Park YH, Kil WH et al (2014) Clinicopathological features of early failure of neoadjuvant chemotherapy in locally advanced breast cancer. Cancer Chemother Pharmacol 74:521–529.  https://doi.org/10.1007/s00280-014-2542-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Ejlertsen B, Jensen M-B, Rank F et al (2009) Population-based study of peritumoral lymphovascular invasion and outcome among patients with operable breast cancer. J Natl Cancer Inst 101:729–735.  https://doi.org/10.1093/jnci/djp090 CrossRefPubMedGoogle Scholar
  19. 19.
    Ragage F, Debled M, MacGrogan G et al (2010) Is it useful to detect lymphovascular invasion in lymph node-positive patients with primary operable breast cancer? Cancer 116:3093–3101.  https://doi.org/10.1002/cncr.25137 CrossRefPubMedGoogle Scholar
  20. 20.
    Guarnieri A, Neri A, Correale PP et al (2001) Prediction of lymph node status by analysis of prognostic factors and possible indications for elective axillary dissection in T1 breast cancers. Eur J Surg Acta Chir 167:255–259.  https://doi.org/10.1080/110241501300091381 CrossRefGoogle Scholar
  21. 21.
    Ugras S, Stempel M, Patil S, Morrow M (2014) Estrogen receptor, progesterone receptor, and HER2 status predict lymphovascular invasion and lymph node involvement. Ann Surg Oncol 21:3780–3786.  https://doi.org/10.1245/s10434-014-3851-y CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669.  https://doi.org/10.1158/0008-5472.CAN-10-1040 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Aleskandarany MA, Sonbul SN, Mukherjee A, Rakha EA (2015) Molecular mechanisms underlying lymphovascular invasion in invasive breast cancer. Pathobiology 82:113–123.  https://doi.org/10.1159/000433583 CrossRefPubMedGoogle Scholar
  24. 24.
    Provenzano E, Bossuyt V, Viale G, et al (2015) Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an international working group. Mod Pathol 28:1185–201.  https://doi.org/10.1038/modpathol.2015.74
  25. 25.
    Masuda N, Lee S-J, Ohtani S et al (2017) Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med 376:2147–2159.  https://doi.org/10.1056/NEJMoa1612645 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anne-Sophie Hamy
    • 1
  • Giang-Thanh Lam
    • 2
    • 3
  • Enora Laas
    • 2
  • Lauren Darrigues
    • 2
  • Thomas Balezeau
    • 4
  • Julien Guerin
    • 4
  • Alain Livartowski
    • 4
    • 5
  • Benjamin Sadacca
    • 1
  • Jean-Yves Pierga
    • 5
  • Anne Vincent-Salomon
    • 6
  • Florence Coussy
    • 7
  • Veronique Becette
    • 8
  • Hélène Bonsang-Kitzis
    • 2
  • Roman Rouzier
    • 9
    • 10
  • Jean-Guillaume Feron
    • 2
  • Gabriel Benchimol
    • 2
  • Marick Laé
    • 6
  • Fabien Reyal
    • 1
    • 2
    Email author
  1. 1.Translational Research Department, INSERM, U932, Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory, RT2LabInstitut Curie, PSL Research UniversityParisFrance
  2. 2.Department of SurgeryInstitut Curie, PSL Research UniversityParisFrance
  3. 3.Department of Gynecology and ObstetricsGeneva University HospitalsGenevaSwitzerland
  4. 4.Department of Medical Informatics and DataInstitut Curie, PSL Research UniversityParisFrance
  5. 5.Department of Medical OncologyInstitut Curie, PSL Research UniversityParisFrance
  6. 6.Department of PathologyInstitut Curie, PSL Research UniversityParisFrance
  7. 7.Department of Medical OncologyHôpital René HugueninSaint-CloudFrance
  8. 8.Department of PathologyHôpital René HugueninSaint-CloudFrance
  9. 9.Department of SurgeryHôpital René HugueninSaint-CloudFrance
  10. 10.Equipe d’Accueil 7285, Risk and Safety in Clinical Medicine for Women and Perinatal HealthUniversity Versailles-Saint-QuentinMontigny-Le-BretonneuxFrance

Personalised recommendations