Breast Cancer Research and Treatment

, Volume 168, Issue 2, pp 531–542 | Cite as

PRMT5 determines the sensitivity to chemotherapeutics by governing stemness in breast cancer

  • Zhe Wang
  • Jing Kong
  • Ying Wu
  • Juliang Zhang
  • Ting Wang
  • Nanlin Li
  • Jing Fan
  • Hui Wang
  • Jian ZhangEmail author
  • Rui LingEmail author
Brief Report



Acquired resistance to chemotherapeutic agents in breast cancer is a major clinical challenge. Recent studies have shown that the emergence of cancer stem cells contributes to the development of drug resistance, and the protein arginine methyltransferase 5 (PRMT5) was crucial for the maintenance of stemness. However, the roles of PRMT5 in breast cancer cell stemness and the development of cancer drug resistance have not been clarified. In this study, we investigated the effect of PRMT5 on the sensitivity to doxorubicin and cell stemness in breast cancer.


PRMT5 expression was assessed in a panel of breast cancer cell lines (MDA-MB-231, MCF7, T-47D, BT-474, Au-565) and normal mammal epithelial cells (MCF10A). For knockdown of PRMT5 expression, two pairs of shRNAs as well as a control shRNA were utilized. Meanwhile, the wild-type PRMT5 and its catalytically dead counterpart (R368A) were stably overexpressed in MDA-MB-231 and MCF7 cells. The sensitivity to doxorubicin was determined by MTT assays, TUNEL assays, and Western blot analyses. To evaluate the degree of cell stemness, CD24/CD44-sorting and mammosphere formation experiments were performed.


We demonstrated that PRMT5 regulates OCT4/A, KLF4, and C-MYC in breast cancer to govern stemness and affects the doxorubicin resistance of breast cancer.


Our study suggests that PRMT5 may play an important role in the doxorubicin resistance of breast cancer.


Breast cancer PRMT5 Cancer stem cell Doxorubicin resistance 



This study was supported by the National Natural Science Foundation of China (Nos. 81572917 and 81372390).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    van Diest PJ, van der Wall E, Baak JP (2004) Prognostic value of proliferation in invasive breast cancer: a review. J Clin Pathol 57(7):675–681. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. CrossRefGoogle Scholar
  3. 3.
    Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685. CrossRefPubMedGoogle Scholar
  4. 4.
    Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE (1999) Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 17(2):460–469. CrossRefPubMedGoogle Scholar
  5. 5.
    Paridaens R, Biganzoli L, Bruning P, Klijn J, Gamucci T, Houston S, Coleman R, Schachter J, Van Vreckem A, Sylvester R (2000) Paclitaxel versus doxorubicin as first-line single-agent chemotherapy for metastatic breast cancer: a European Organization for Research and Treatment of Cancer Randomized Study with cross-over. J Clin Oncol 18(4):724CrossRefPubMedGoogle Scholar
  6. 6.
    Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19(14):3312–3322CrossRefPubMedGoogle Scholar
  7. 7.
    Obrien M, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback D, Tomczak P, Ackland S (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449CrossRefGoogle Scholar
  8. 8.
    Bockhorn J, Dalton R, Nwachukwu C, Huang S, Prat A, Yee K, Chang Y-F, Huo D, Wen Y, Swanson KE (2013) MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun 4:1393CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Futakuchi M, Fukamachi K, Suzui M (2016) Heterogeneity of tumor cells in the bone microenvironment: mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer. Adv Drug Deliv Rev 99:206–211CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P, Zhang X (2016) Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano 11(1):335–346CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rodriguez-Barrueco R, Nekritz EA, Bertucci F, Yu J, Sanchez-Garcia F, Zeleke TZ, Gorbatenko A, Birnbaum D, Ezhkova E, Cordon-Cardo C (2017) miR-424 (322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy. Genes Dev 31(6):553–566CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Taylor C, Dalton W, Parrish P, Gleason M, Bellamy W, Thompson F, Roe D, Trent JM (1991) Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br J Cancer 63(6):923CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Slovak ML, Hoeltge GA, Dalton WS, Trent JM (1988) Pharmacological and biological evidence for differing mechanisms of doxorubicin resistance in two human tumor cell lines. Can Res 48(10):2793–2797Google Scholar
  14. 14.
    Stopa N, Krebs JE, Shechter D (2015) The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 72(11):2041–2059. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yan F, Alinari L, Lustberg ME, Martin LK, Cordero-Nieves HM, Banasavadi-Siddegowda Y, Virk S, Barnholtz-Sloan J, Bell EH, Wojton J, Jacob NK, Chakravarti A, Nowicki MO, Wu X, Lapalombella R, Datta J, Yu B, Gordon K, Haseley A, Patton JT, Smith PL, Ryu J, Zhang X, Mo X, Marcucci G, Nuovo G, Kwon CH, Byrd JC, Chiocca EA, Li C, Sif S, Jacob S, Lawler S, Kaur B, Baiocchi RA (2014) Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res 74(6):1752–1765. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tarighat SS, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M, Wang H, Huang X, Alinari L, Walker A, Caligiuri MA, Croce CM, Li L, Garzon R, Li C, Baiocchi RA, Marcucci G (2016) The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30(4):789–799. CrossRefPubMedGoogle Scholar
  17. 17.
    Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13(1):37–50CrossRefPubMedGoogle Scholar
  18. 18.
    Bao X, Zhao S, Liu T, Liu Y, Liu Y, Yang X (2013) Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem 61(3):206–217. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gu Z, Gao S, Zhang F, Wang Z, Ma W, Davis RE, Wang Z (2012) Protein arginine methyltransferase 5 is essential for growth of lung cancer cells. Biochem J 446(2):235–241. CrossRefPubMedGoogle Scholar
  20. 20.
    Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE, Vazquez F, Weir BA, Fitzgerald ME, Tanaka M (2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351(6278):1214–1218CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mavrakis KJ, McDonald ER 3rd, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G, Stump M, deBeaumont R, Ho S, Yue Y, Liu Y, Yan-Neale Y, Yang G, Lin F, Yin H, Gao H, Kipp DR, Zhao S, McNamara JT, Sprague ER, Zheng B, Lin Y, Cho YS, Gu J, Crawford K, Ciccone D, Vitari AC, Lai A, Capka V, Hurov K, Porter JA, Tallarico J, Mickanin C, Lees E, Pagliarini R, Keen N, Schmelzle T, Hofmann F, Stegmeier F, Sellers WR (2016) Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351(6278):1208–1213. CrossRefPubMedGoogle Scholar
  22. 22.
    Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y, Du X, Li J, Li P, Ren R, Pan J (2016) Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest 126(10):3961–3980. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111CrossRefPubMedGoogle Scholar
  24. 24.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744–749CrossRefPubMedGoogle Scholar
  25. 25.
    Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284CrossRefPubMedGoogle Scholar
  27. 27.
    Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca L, Peschle C, De Maria R (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13(7):1238–1241CrossRefPubMedGoogle Scholar
  28. 28.
    Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, Surani MA (2010) Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev 24(24):2772–2777. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chittka A, Nitarska J, Grazini U, Richardson WD (2012) Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J Biol Chem 287(51):42995–43006. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wu Y, Wang Z, Zhang J, Ling R (2017) Elevated expression of protein arginine methyltransferase 5 predicts the poor prognosis of breast cancer. Tumor Biol 39(4):1010428317695917Google Scholar
  32. 32.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefPubMedGoogle Scholar
  33. 33.
    Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee JH, Negre V, Rousset M, Pestka S, Le Cam A, Sardet C (2002) Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3(7):641–645. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10(12):1431–1439. CrossRefPubMedGoogle Scholar
  35. 35.
    Hu D, Gur M, Zhou Z, Gamper A, Hung MC, Fujita N, Lan L, Bahar I, Wan Y (2015) Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 6:8419. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Thyroid, Breast and Vascular SurgeryXijing Hospital, The Fourth Military Medical UniversityXi’anChina
  2. 2.The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations