Breast Cancer Research and Treatment

, Volume 166, Issue 1, pp 117–131 | Cite as

Functional importance of PP2A regulatory subunit loss in breast cancer

  • Lauren F. Watt
  • Nikita Panicker
  • Abdul Mannan
  • Ben Copeland
  • Richard G. S. Kahl
  • Matthew D. Dun
  • Barbara Young
  • Severine Roselli
  • Nicole M. VerrillsEmail author
Preclinical study



Protein phosphatase 2A (PP2A) is a family of serine/threonine phosphatases that regulate multiple cellular signalling pathways involved in proliferation, survival and apoptosis. PP2A inhibition occurs in many cancers and is considered a tumour suppressor. Deletion/downregulation of PP2A genes has been observed in breast tumours, but the functional role of PP2A subunit loss in breast cancer has not been investigated.


PP2A subunit expression was examined by immunohistochemistry in human breast tumours, and by qPCR and immunoblotting in breast cancer cell lines. PP2A subunits were inhibited by shRNA, and mutant PP2A genes overexpressed, in MCF10A and MCF7 cells, and growth and signalling in standard and three-dimensional cultures were assessed.


Expression of PP2A-Aα, PP2A-Bα and PP2A-B′α subunits was significantly lower in primary human breast tumours and lymph node metastases, compared to normal mammary tissue. PP2A-Aα and the regulatory subunits PP2A-Bα, -Bδ and -B′γ were also reduced in breast cancer cell lines compared to normal mammary epithelial cells. Functionally, shRNA-mediated knockdown of PP2A-Bα, -B′α and -B′γ, but not PP2A-Aα, induced hyper-proliferation and large multilobular acini in MCF10A 3D cultures, characterised by activation of ERK. Expression of a breast cancer-associated PP2A-A mutant, PP2A-Aα-E64G, which inhibits binding of regulatory subunits to the PP2A core, induced a similar hyper-proliferative phenotype. Knockdown of PP2A-Bα also induced hyper-proliferation in MCF7 breast cancer cells.


These results suggest that loss of specific PP2A regulatory subunits is functionally important in breast tumourigenesis, and support strategies to enhance PP2A activity as a therapeutic approach in breast cancer.


Breast cancer PP2A MCF10A Tumour suppressor 3D culture Phosphatase 



We thank Prof Stefan Strack for PP2A constructs, Prof Roger Daly for MCF10A cells, and Ms Helen Carpenter for technical assistance.

Grant support

This work was supported by grants from the Cure Cancer Australia Foundation, the Pink Frangipani Ball, the Cancer Council NSW and the Hunter Medical Research Institute. LW was supported by an Australian Postgraduate Award, a University of Newcastle VC Award, and a Cancer Institute NSW Research Scholar Award. MDD and NMV were supported by Fellowships from the Cancer Institute NSW.

Compliance with ethical standards

Conflict of interest

the authors have no conflicts to declare.

Supplementary material

10549_2017_4403_MOESM1_ESM.pdf (10.4 mb)
Supplementary material 1 (PDF 10605 kb)


  1. 1.
    Kenemans P, Verstraeten RA, Verheijen RH (2004) Oncogenic pathways in hereditary and sporadic breast cancer. Maturitas 49(1):34–43CrossRefPubMedGoogle Scholar
  2. 2.
    Singletary SE (2002) A working model for the time sequence of genetic changes in breast tumorigenesis. J Am Coll Surg 194(2):202–216CrossRefPubMedGoogle Scholar
  3. 3.
    Karakosta A, Golias C, Charalabopoulos A, Peschos D, Batistatou A, Charalabopoulos K (2005) Genetic models of human cancer as a multistep process. Paradigm models of colorectal cancer, breast cancer, and chronic myelogenous and acute lymphoblastic leukaemia. J Exp Clin Cancer Res. 24(4):505–514PubMedGoogle Scholar
  4. 4.
    Adams DG, Coffee RL Jr, Zhang H, Pelech S, Strack S, Wadzinski BE (2005) Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes. J Biol Chem 280(52):42644–42654CrossRefPubMedGoogle Scholar
  5. 5.
    Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW (2008) Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem 283(4):1882–1892CrossRefPubMedGoogle Scholar
  6. 6.
    Janssens V, Goris J, Van Hoof C (2005) PP2A: the expected tumor suppressor. Curr Opin Genet Dev 15(1):34–41CrossRefPubMedGoogle Scholar
  7. 7.
    McCright B, Rivers AM, Audlin S, Virshup DM (1996) The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271(36):22081–22089CrossRefPubMedGoogle Scholar
  8. 8.
    Sablina AA, Hector M, Colpaert N, Hahn WC (2010) Identification of PP2A complexes and pathways involved in cell transformation. Cancer Res 70(24):10474–10484CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC (2004) Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5(2):127–136CrossRefPubMedGoogle Scholar
  10. 10.
    Perrotti D, Neviani P (2013) Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol 14(6):e229–238CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Smith AM, Roberts KG, Verrills NM (2011) Ser/Thr phosphatases: the new frontier for Myeloid Leukemia therapy? In: Koschmieder S, Krug U (eds) Myeloid Leukemia—basic mechanisms of leukemogenesis. Intech, Croatia, pp 123–148Google Scholar
  12. 12.
    Roberts KG, Smith AM, McDougall F, Carpenter H, Horan M, Neviani P, Powell JA, Thomas D, Guthridge MA, Perrotti D, Sim AT, Ashman LK, Verrills NM (2010) Essential requirement for PP2A inhibition by the oncogenic receptor c-KIT suggests PP2A reactivation as a strategy to treat c-KIT+ cancers. Cancer Res 70(13):5438–5447CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Smith AM, Dun MD, Lee EM, Harrison C, Kahl R, Flanagan H, Panicker N, Mashkani B, Don AS, Morris J, Toop H, Lock RB, Powell JA, Thomas D, Guthridge MA, Moore A et al (2016) Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors. Oncotarget 7(30):47465–47478CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, Cho DH, Lim JS, Kim KI, Yang Y (2009) Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Can Res 69(9):4018–4026CrossRefGoogle Scholar
  15. 15.
    Rincon R, Cristobal I, Zazo S, Arpi O, Menendez S, Manso R, Lluch A, Eroles P, Rovira A, Albanell J, Garcia-Foncillas J, Madoz-Gurpide J, Rojo F (2015) PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects. Oncotarget 6(6):4299–4314CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, Croce CM, Barbanti-Brodano G, Russo G, Negrini M (2000) Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19(9):1191–1195CrossRefPubMedGoogle Scholar
  17. 17.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  18. 18.
    Esplin ED, Ramos P, Martinez B, Tomlinson GE, Mumby MC, Evans GA (2006) The glycine 90 to aspartate alteration in the Abeta subunit of PP2A (PPP2R1B) associates with breast cancer and causes a deficit in protein function. Genes Chromosomes Cancer 45(2):182–190CrossRefPubMedGoogle Scholar
  19. 19.
    Come C, Laine A, Chanrion M, Edgren H, Mattila E, Liu X, Jonkers J, Ivaska J, Isola J, Darbon JM, Kallioniemi O, Thezenas S, Westermarck J (2009) CIP2A is associated with human breast cancer aggressivity. Clin Cancer Res 15(16):5092–5100CrossRefPubMedGoogle Scholar
  20. 20.
    Janghorban M, Farrell AS, Allen-Petersen BL, Pelz C, Daniel CJ, Oddo J, Langer EM, Christensen DJ, Sears RC (2014) Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. Proc Natl Acad Sci U S A 111(25):9157–9162CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baldacchino S, Saliba C, Petroni V, Fenech AG, Borg N, Grech G (2014) Deregulation of the phosphatase, PP2A is a common event in breast cancer, predicting sensitivity to FTY720. EPMA J 5(1):3CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S et al (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486(7403):346–352PubMedPubMedCentralGoogle Scholar
  23. 23.
    Beca F, Pereira M, Cameselle-Teijeiro JF, Martins D, Schmitt F (2015) Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer. BMC Cancer 15:285CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brummer T, Schramek D, Hayes VM, Bennett HL, Caldon CE, Musgrove EA, Daly RJ (2006) Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. J Biol Chem 281(1):626–637CrossRefPubMedGoogle Scholar
  25. 25.
    Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30(3):256–268CrossRefPubMedGoogle Scholar
  26. 26.
    Strack S, Cribbs JT, Gomez L (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem 279(46):47732–47739CrossRefPubMedGoogle Scholar
  27. 27.
    Copeland BT, Bowman MJ, Ashman LK (2013) Genetic ablation of the tetraspanin CD151 reduces spontaneous metastatic spread of prostate cancer in the TRAMP model. Mol Cancer Res 11(1):95–105CrossRefPubMedGoogle Scholar
  28. 28.
    Tolstykh T, Lee J, Vafai S, Stock JB (2000) Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J 19(21):5682–5691CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Longin S, Zwaenepoel K, Louis JV, Dilworth S, Goris J, Janssens V (2007) Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic Subunit. J Biol Chem 282(37):26971–26980CrossRefPubMedGoogle Scholar
  30. 30.
    Ruediger R, Ruiz J, Walter G (2011) Human cancer-associated mutations in Aα subunit of protein phosphatase 2A increase lung cancer incidence in Aa knock-in and knockout Mice. Mol Cell Biol 31(18):3832–3844CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Strack S, Ruediger R, Walter G, Dagda RK, Barwacz CA, Cribbs JT (2002) Protein phosphatase 2A holoenzyme assembly: identification of contacts between B-family regulatory and scaffolding A subunits. J Biol Chem 277(23):20750–20755CrossRefPubMedGoogle Scholar
  32. 32.
    Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688CrossRefPubMedGoogle Scholar
  33. 33.
    Ruediger R, Pham HT, Walter G (2001) Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 20(1):10–15CrossRefPubMedGoogle Scholar
  34. 34.
    Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127(6):1239–1251CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou J, Pham HT, Ruediger R, Walter G (2003) Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: differences in expression, subunit interaction, and evolution. Biochem J 369(Pt 2):387–398CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen W, Arroyo JD, Timmons JC, Possemato R, Hahn WC (2005) Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Can Res 65(18):8183–8192CrossRefGoogle Scholar
  37. 37.
    Suzuki K, Takahashi K (2006) Induction of E-cadherin endocytosis by loss of protein phosphatase 2A expression in human breast cancers. Biochem Biophys Res Commun 349(1):255–260CrossRefPubMedGoogle Scholar
  38. 38.
    Yu XX, Du X, Moreno CS, Green RE, Ogris E, Feng Q, Chou L, McQuoid MJ, Pallas DC (2001) Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Mol Biol Cell 12(1):185–199CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ripple MO, Kalmadi S, Eastman A (2005) Inhibition of either phosphatidylinositol 3-kinase/Akt or the mitogen/extracellular-regulated kinase, MEK/ERK, signaling pathways suppress growth of breast cancer cell lines, but MEK/ERK signaling is critical for cell survival. Breast Cancer Res Treat 93(2):177–188CrossRefPubMedGoogle Scholar
  40. 40.
    Leung CT, Brugge JS (2012) Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 482(7385):410–413CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Debnath J, Walker SJ, Brugge JS (2003) Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner. J Cell Biol 163(2):315–326CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS (2001) ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3(9):785–792CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Badache A, Goncalves A (2006) The ErbB2 signaling network as a target for breast cancer therapy. J Mammary Gland Biol Neoplasia 11(1):13–25CrossRefPubMedGoogle Scholar
  44. 44.
    Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19(53):6102–6114CrossRefPubMedGoogle Scholar
  45. 45.
    Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, Cantley LC, Brugge JS (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65(23):10992–11000CrossRefPubMedGoogle Scholar
  46. 46.
    Takahashi K (2001) The linkage between beta1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of beta1 integrin in normal and cancerous human breast cells. BMC Cell Biol 2:23CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nakajima E, Suzuki K, Takahashi K (2005) Mitotic dissociation of IQGAP1 from Rac-bound beta1-integrin is mediated by protein phosphatase 2A. Biochem Biophys Res Commun 326(1):249–253CrossRefPubMedGoogle Scholar
  48. 48.
    Suzuki K, Chikamatsu Y, Takahashi K (2005) Requirement of protein phosphatase 2A for recruitment of IQGAP1 to Rac-bound beta1 integrin. J Cell Physiol 203(3):487–492CrossRefPubMedGoogle Scholar
  49. 49.
    Ito A, Kataoka TR, Watanabe M, Nishiyama K, Mazaki Y, Sabe H, Kitamura Y, Nojima H (2000) A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J 19(4):562–571CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sontag JM, Sontag E (2006) Regulation of cell adhesion by PP2A and SV40 small tumor antigen: an important link to cell transformation. Cell Mol Life Sci 63(24):2979–2991CrossRefPubMedGoogle Scholar
  51. 51.
    Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4(4):E83–90CrossRefPubMedGoogle Scholar
  52. 52.
    Wozniak MA, Modzelewska K, Kwong L, Keely PJ (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692(2–3):103–119CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lauren F. Watt
    • 1
    • 2
  • Nikita Panicker
    • 1
    • 2
  • Abdul Mannan
    • 1
    • 2
  • Ben Copeland
    • 1
    • 2
    • 3
  • Richard G. S. Kahl
    • 1
    • 2
  • Matthew D. Dun
    • 1
    • 2
  • Barbara Young
    • 4
    • 5
  • Severine Roselli
    • 1
    • 2
  • Nicole M. Verrills
    • 1
    • 2
    Email author
  1. 1.Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, and Priority Research Centre for Cancer Research, Innovation and TranslationUniversity of NewcastleCallaghanAustralia
  2. 2.Cancer Research ProgramHunter Medical Research InstituteNew LambtonAustralia
  3. 3.Beckman Research Institute, City of HopeDuarteUSA
  4. 4.Department Anatomical Pathology, Hunter Area Pathology Service (HAPS)John Hunter HospitalNew Lambton HeightsAustralia
  5. 5.Faculty of Health and Medicine, School of Medicine and Public HealthUniversity of NewcastleCallaghanAustralia

Personalised recommendations