Skip to main content

Advertisement

Log in

Tumor suppressor protein p53 exerts negative transcriptional regulation on human sodium iodide symporter gene expression in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) is well documented but the transcription factors (TF) regulating its aberrant expression is poorly known. We identify the presence of three p53 binding sites on the human NIS promoter sequence by conducting genome-wide TF analysis, and further investigate their regulatory role.

Methods

The differences in transcription and translation were measured by real-time PCR, luciferase reporter assay, site-directed mutagenesis, in vivo optical imaging, and chromatin immunoprecipitation. The relation of NIS and p53 in clinical samples was judged by TCGA data analysis and immunohistochemistry.

Results

Overexpression of wild-type p53 as a transgene or pharmacological activation by doxorubicin drug treatment shows significant suppression of NIS transcription in multiple BC cell types which also results in lowered NIS protein content and cellular iodide intake. NIS repression by activated p53 is further confirmed by non-invasive bioluminescence imaging in live cell and orthotropic tumor model. Abrogation of p53-binding sites by directional mutagenesis confirms reversal of transcriptional activity in wild-type p53-positive BC cells. We also observe direct binding of p53 to these sites on the human NIS promoter. Importantly, TCGA data analysis of NIS and p53 co-expression registers an inverse relationship between the two candidates.

Conclusion

Our data for the first time highlight the role of p53 as a negative regulator of functional NIS expression in BC, where the latter is a potential targeted radioiodine therapy candidate. Thus, the study provides an important insight into prospective clinical application of this approach that may significantly impact the patient with mutant versus wild-type p53 profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

atRA:

All-trans retinoic acid

BC:

Breast cancer

ChIP:

Chromatin immunoprecipitation

Dox:

Doxorubicin

IHC:

Immunohistochemistry

NIS:

Sodium iodide symporter

NUE:

NIS upstream enhancer

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

TNBC:

Triple-negative breast cancer

TF:

Transcription factor

TSH:

Thyroid-stimulating hormone

References

  1. Spitzweg C, Harrington KJ, Pinke LA, Vile RG, Morris JC (2001) Clinical review 132: the sodium iodide symporter and its potential role in cancer therapy. J Clin Endocrinol Metab 86(7):3327–3335. doi:10.1210/jcem.86.7.7641

    Article  CAS  PubMed  Google Scholar 

  2. Micali S, Bulotta S, Puppin C, Territo A, Navarra M, Bianchi G, Damante G, Filetti S, Russo D (2014) Sodium iodide symporter (NIS) in extrathyroidal malignancies: focus on breast and urological cancer. BMC Cancer 14:303. doi:10.1186/1471-2407-14-303

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahn BC (2012) Sodium iodide symporter for nuclear molecular imaging and gene therapy: from bedside to bench and back. Theranostics 2(4):392–402. doi:10.7150/thno.3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho JY, Leveille R, Kao R, Rousset B, Parlow AF, Burak WE Jr, Mazzaferri EL, Jhiang SM (2000) Hormonal regulation of radioiodide uptake activity and Na+/I- symporter expression in mammary glands. J Clin Endocrinol Metab 85(8):2936–2943

    CAS  PubMed  Google Scholar 

  5. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, Deng HF, Amenta PS, Fineberg S, Pestell RG, Carrasco N (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 6(8):871–878

    Article  CAS  PubMed  Google Scholar 

  6. Wapnir IL, Goris M, Yudd A, Dohan O, Adelman D, Nowels K, Carrasco N (2004) The Na+/I- symporter mediates iodide uptake in breast cancer metastases and can be selectively down-regulated in the thyroid. Clin Cancer Res 10(13):4294–4302

    Article  CAS  PubMed  Google Scholar 

  7. Renier C, Yao C, Goris M, Ghosh M, Katznelson L, Nowles K, Gambhir SS, Wapnir I (2009) Endogenous NIS expression in triple-negative breast cancers. Ann Surg Oncol 16(4):962–968

    Article  PubMed  Google Scholar 

  8. Moon DH, Lee SJ, Park KY, Park KK, Ahn SH, Pai MS, Chang H, Lee HK, Ahn IM (2001) Correlation between 99mTc-pertechnetate uptakes and expressions of human sodium iodide symporter gene in breast tumor tissues. Nucl Med Biol 28(7):829–834

    Article  CAS  PubMed  Google Scholar 

  9. Chatterjee S, Malhotra R, Varghese F, Bukhari AB, Patil A, Budrukkar A, Parmar V, Gupta S, De A (2013) Quantitative immunohistochemical analysis reveals association between sodium iodide symporter and estrogen receptor expression in breast cancer. PLoS ONE 8(1):e54055. doi:10.1371/journal.pone.0054055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Puppin C, Arturi F, Ferretti E, Russo D, Sacco R, Tell G, Damante G, Filetti S (2004) Transcriptional regulation of human sodium/iodide symporter gene: a role for redox factor-1. Endocrinology 145(3):1290–1293. doi:10.1210/en.2003-1250

    Article  CAS  PubMed  Google Scholar 

  11. Ohno M, Zannini M, Levy O, Carrasco N, di Lauro R (1999) The paired-domain transcription factor Pax8 binds to the upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription. Mol Cell Biol 19(3):2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kogai T, Brent GA (2012) The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther 135(3):355–370. doi:10.1016/j.pharmthera.2012.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Riesco-Eizaguirre G, Wert-Lamas L, Perales-Paton J, Sastre-Perona A, Fernandez LP, Santisteban P (2015) The miR-146b-3p/PAX8/NIS regulatory circuit modulates the differentiation phenotype and function of thyroid cells during carcinogenesis. Cancer Res 75(19):4119–4130. doi:10.1158/0008-5472.CAN-14-3547

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez LP, Lopez-Marquez A, Martinez AM, Gomez-Lopez G, Santisteban P (2013) New insights into FoxE1 functions: identification of direct FoxE1 targets in thyroid cells. PLoS ONE 8(5):e62849. doi:10.1371/journal.pone.0062849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spitzweg C (2003) [The sodium-iodide symporter. Pathophysiologic, diagnostic and therapeutic significance]. Der Internist 44(4):396–402

    Article  CAS  PubMed  Google Scholar 

  16. Kogai T, Kanamoto Y, Li AI, Che LH, Ohashi E, Taki K, Chandraratna RA, Saito T, Brent GA (2005) Differential regulation of sodium/iodide symporter gene expression by nuclear receptor ligands in MCF-7 breast cancer cells. Endocrinology 146(7):3059–3069. doi:10.1210/en.2004-1334

    Article  CAS  PubMed  Google Scholar 

  17. Dentice M, Luongo C, Elefante A, Romino R, Ambrosio R, Vitale M, Rossi G, Fenzi G, Salvatore D (2004) Transcription factor Nkx-2.5 induces sodium/iodide symporter gene expression and participates in retinoic acid- and lactation-induced transcription in mammary cells. Mol Cell Biol 24(18):7863–7877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kogai T, Schultz JJ, Johnson LS, Huang M, Brent GA (2000) Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line. Proc Natl Acad Sci U S A 97(15):8519–8524. doi:10.1073/pnas.140217197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kogai T, Kanamoto Y, Che LH, Taki K, Moatamed F, Schultz JJ, Brent GA (2004) Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodide uptake in mouse breast cancer models. Cancer Res 64(1):415–422

    Article  CAS  PubMed  Google Scholar 

  20. Ohashi E, Kogai T, Kagechika H, Brent GA (2009) Activation of the PI3 kinase pathway by retinoic acid mediates sodium/iodide symporter induction and iodide transport in MCF-7 breast cancer cells. Cancer Res 69(8):3443–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alotaibi H, Yaman E, Salvatore D, Di Dato V, Telkoparan P, Di Lauro R, Tazebay UH (2006) Intronic elements in the Na +/I- symporter gene (NIS) interact with retinoic acid receptors and mediate initiation of transcription. Nucleic Acids Res 38(10):3172–3185

    Article  Google Scholar 

  22. Tanosaki S, Ikezoe T, Heaney A, Said JW, Dan K, Akashi M, Koeffler HP (2003) Effect of ligands of nuclear hormone receptors on sodium/iodide symporter expression and activity in breast cancer cells. Breast Cancer Res Treat 79(3):335–345

    Article  CAS  PubMed  Google Scholar 

  23. Baldan F, Lavarone E, Di Loreto C, Filetti S, Russo D, Damante G, Puppin C (2014) Histone post-translational modifications induced by histone deacetylase inhibition in transcriptional control units of NIS gene. Mol Biol Rep 41(8):5257–5265. doi:10.1007/s11033-014-3397-x

    Article  CAS  PubMed  Google Scholar 

  24. Kelkar MG, Senthilkumar K, Jadhav S, Gupta S, Ahn B-C, De A (2016) Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation. Sci Rep 6:19341. doi:10.1038/srep19341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9(10):724–737. doi:10.1038/nrc2730

    Article  CAS  PubMed  Google Scholar 

  26. Alsner J, Yilmaz M, Guldberg P, Hansen LL, Overgaard J (2000) Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients. Clin Cancer Res 6(10):3923–3931

    CAS  PubMed  Google Scholar 

  27. Shapira I, Lee A, Vora R, Budman DR (2013) P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency. Crit Rev Oncol/Hematol 88(2):284–292. doi:10.1016/j.critrevonc.2013.05.003

    Article  Google Scholar 

  28. Ray P, De A, Min JJ, Tsien RY, Gambhir SS (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Can Res 64(4):1323–1330

    Article  CAS  Google Scholar 

  29. Mandell RB, Mandell LZ, Link CJ Jr (1999) Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 59(3):661–668

    CAS  PubMed  Google Scholar 

  30. Waltz F, Pillette L, Ambroise Y (2010) A nonradioactive iodide uptake assay for sodium iodide symporter function. Anal Biochem 396(1):91–95. doi:10.1016/j.ab.2009.08.038

    Article  CAS  PubMed  Google Scholar 

  31. Venkataraman GM, Yatin M, Ain KB (1998) Cloning of the human sodium-iodide symporter promoter and characterization in a differentiated human thyroid cell line, KAT-50. Thyroid 8(1):63–69. doi:10.1089/thy.1998.8.63

    Article  CAS  PubMed  Google Scholar 

  32. Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4(10):793–805. doi:10.1038/nrc1455

    Article  CAS  PubMed  Google Scholar 

  33. Meek DW (2004) The p53 response to DNA damage. DNA Repair 3(8–9):1049–1056. doi:10.1016/j.dnarep.2004.03.027

    Article  CAS  PubMed  Google Scholar 

  34. Briat A, Vassaux G (2008) A new transgenic mouse line to image chemically induced p53 activation in vivo. Cancer Sci 99(4):683–688. doi:10.1111/j.1349-7006.2008.00742.x

    Article  CAS  PubMed  Google Scholar 

  35. Chatterjee S, Thaker N, De A (2015) Combined 2-deoxy glucose and metformin improves therapeutic efficacy of sodium-iodide symporter-mediated targeted radioiodine therapy in breast cancer cells. Breast Cancer 7:251–265. doi:10.2147/BCTT.S84648

    PubMed  PubMed Central  Google Scholar 

  36. Nair AR, Schliekelman M, Thomas MB, Wakefield J, Jurgensen S, Ramabhadran R (2005) Inhibition of p53 by lentiviral mediated shRNA abrogates G1 arrest and apoptosis in retinal pigmented epithelial cell line. Cell Cycle 4(5):697–703. doi:10.4161/cc.4.5.1672

    Article  CAS  PubMed  Google Scholar 

  37. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, Ng S, Lin L, Crowder R, Snider J, Ballman K, Weber J, Chen K, Koboldt DC, Kandoth C, Schierding WS, McMichael JF, Miller CA, Lu C, Harris CC, McLellan MD, Wendl MC, DeSchryver K, Allred DC, Esserman L, Unzeitig G, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Leitch M, Hunt K, Olson J, Tao Y, Maher CA, Fulton LL, Fulton RS, Harrison M, Oberkfell B, Du F, Demeter R, Vickery TL, Elhammali A, Piwnica-Worms H, McDonald S, Watson M, Dooling DJ, Ota D, Chang LW, Bose R, Ley TJ, Piwnica-Worms D, Stuart JM, Wilson RK, Mardis ER (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403):353–360. doi:10.1038/nature11143

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. doi:10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  39. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. doi:10.1126/scisignal.2004088

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih Ie M, Kurman RJ (2011) Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Modern Pathol 24 (9):1248-1253. doi:10.1038/modpathol.2011.85

  41. Zaika A, Marchenko N, Moll UM (1999) Cytoplasmically “sequestered” wild type p53 protein is resistant to Mdm2-mediated degradation. J Biol Chem 274(39):27474–27480

    Article  CAS  PubMed  Google Scholar 

  42. Guerrieri F, Piconese S, Lacoste C, Schinzari V, Testoni B, Valogne Y, Gerbal-Chaloin S, Samuel D, Brechot C, Faivre J, Levrero M (2013) The sodium/iodide symporter NIS is a transcriptional target of the p53-family members in liver cancer cells. Cell Death Dis 4:e807. doi:10.1038/cddis.2013.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marcel V, Olivier M, Mollereau B, Hainaut P, Bourdon JC (2011) First International p53 Isoforms Meeting: ‘p53 isoforms through evolution: from identification to biological function’. Cell Death Differ 18(3):563–564. doi:10.1038/cdd.2010.156

    Article  CAS  PubMed  Google Scholar 

  44. Marcel V, Fernandes K, Terrier O, Lane DP, Bourdon JC (2014) Modulation of p53beta and p53gamma expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ 21(9):1377–1387. doi:10.1038/cdd.2014.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Braithwaite AW, Prives CL (2006) p53: more research and more questions. Cell Death Differ 13(6):877–880. doi:10.1038/sj.cdd.4401938

    Article  CAS  PubMed  Google Scholar 

  46. Brandt T, Townsley FM, Teufel DP, Freund SM, Veprintsev DB (2012) Molecular basis for modulation of the p53 target selectivity by KLF4. PLoS ONE 7(10):e48252. doi:10.1371/journal.pone.0048252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harbor Perspect Biol 1(6):a000950. doi:10.1101/cshperspect.a000950

    Article  Google Scholar 

  48. Ho J, Benchimol S (2003) Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10(4):404–408. doi:10.1038/sj.cdd.4401191

    Article  CAS  PubMed  Google Scholar 

  49. Xu J, Kogai T, Brent GA, Hershman JM (2002) A GC box in the human sodium iodide symporter gene promoter is essential for full activity. Thyroid 12(2):107–114

    Article  CAS  PubMed  Google Scholar 

  50. Bouchet BP, Caron de Fromentel C, Puisieux A, Galmarini CM (2006) p53 as a target for anti-cancer drug development. Crit Rev Oncol/Hematol 58(3):190–207. doi:10.1016/j.critrevonc.2005.10.005

    Article  Google Scholar 

  51. Fuster JJ, Sanz-Gonzalez SM, Moll UM, Andres V (2007) Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13(5):192–199. doi:10.1016/j.molmed.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  52. Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26(12):1268–1286. doi:10.1101/gad.190678.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun Y, Cheung JM, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD, Howell DS, Cheung HS (2000) Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275(15):11327–11332

    Article  CAS  PubMed  Google Scholar 

  54. Menezes MV, Cestari AL, Almeida O, Alvarenga M, Pinto GA, Gurgel MS, Souza GA, Zeferino LC (2006) Protein expression of c-erbB-2 and p53 in normal ducts, ductal carcinoma in situ and invasive carcinoma of the same breast. Sao Paulo Med J 124(3):121–124

    Article  PubMed  Google Scholar 

  55. Mirza AN, Mirza NQ, Vlastos G, Singletary SE (2002) Prognostic factors in node-negative breast cancer: a review of studies with sample size more than 200 and follow-up more than 5 years. Ann Surg 235(1):10–26

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Kenneth Ain, USA, Dr. Sorab Dalal, India for providing various plasmids used in the study. We acknowledge the prior intramural research funding from TMC Woman Cancer Initiative (WCI) (#82) to AD, as well as various institutional facilities supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit De.

Ethics declarations

Conflict of interest

All authors disclose no conflict of interest.

Ethical standards

The authors declare that the experiments performed in the current publication comply with the current laws of the India.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelkar, M.G., Thakur, B., Derle, A. et al. Tumor suppressor protein p53 exerts negative transcriptional regulation on human sodium iodide symporter gene expression in breast cancer. Breast Cancer Res Treat 164, 603–615 (2017). https://doi.org/10.1007/s10549-017-4297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4297-2

Keywords

Navigation