Advertisement

Breast Cancer Research and Treatment

, Volume 164, Issue 3, pp 737–743 | Cite as

Adjuvant tamoxifen but not aromatase inhibitor therapy decreases serum levels of the Wnt inhibitor dickkopf-1 while not affecting sclerostin in breast cancer patients

  • Andy GöbelEmail author
  • Jan D. Kuhlmann
  • Theresa Link
  • Pauline Wimberger
  • Andrew J. Browne
  • Martina Rauner
  • Lorenz C. Hofbauer
  • Tilman D. Rachner
Brief Report

Abstract

Purpose

Endocrine therapies, including tamoxifen or aromatase inhibitors, are indispensable for the treatment of patients with estrogen receptor (ER)- and/or progesterone-positive breast cancer. Whereas tamoxifen displays partial ER agonistic effects in bone, aromatase inhibitors increase bone resorption and fracture risk. The Wnt inhibitors dickkopf-1 (DKK-1) and sclerostin negatively impact bone formation and are considered targets for the treatment of bone disorders. However, the effect of endocrine therapies on serum DKK-1 and sclerostin levels in patients with primary breast cancer remains elusive.

Methods

Serum DKK-1 and sclerostin levels were measured at primary diagnosis as well as 3–5 days and 12 months after surgery in a cohort of 45 pre- and postmenopausal women with primary estrogen receptor-positive breast cancer treated with adjuvant tamoxifen or aromatase inhibitors.

Results

Mean baseline levels ±SD for DKK-1 and sclerostin were 29.7 ± 14.6 and 27.1 ± 16.2 pmol/l, respectively. A significant negative correlation of DKK-1 levels and age was observed (r = −0.32; p < 0.05), but not for sclerostin. Of note, DKK-1 levels were significantly lower in peri- and postmenopausal women compared to premenopausal patients (−47%; p < 0.05). In tamoxifen-treated patients, DKK-1 levels were reduced by 35% (p < 0.01) one year after surgery but remained unaltered in patients treated with aromatase inhibitors. No significant changes were observed for sclerostin.

Conclusion

DKK-1 serum levels were reduced in breast cancer patients receiving an adjuvant therapy with tamoxifen, possibly contributing to its bone-protective properties.

Keywords

Breast cancer Dickkopf-1 Sclerostin Tamoxifen Aromatase inhibitors 

Notes

Acknowledgements

The authors would like to thank Ms. Franziska Paul and Ms. Josefa Hötzel for their excellent technical assistance and Ms. Theresa Reiche for her secretarial assistance. The work was funded by the Deutsche Forschungsgemeinschaft to TDR (RA 2151/2-1, 2-2, and 3-1), MR (RA 1923/5-1), and to LCH (HO 1875/15-1 and 16-1) as part of the DFG Research group SKELMET.

Author’s contribution

Study Design: AG and TDR. Study conduct: AG, JDK, TL, and AJB. Data collection: AG, JDK, TL. Data analysis: AG, JDK, and TDR. Data interpretation: AG, JDK, PW, AJB, MR, LCH, and TDR. Drafting Manuscript: AG and TDR. Revising manuscript content: AG, JDK, TL, PW, AJB, MR, LCH, and TDR. Approving final version of manuscript: AG, JDK, TL, PW, AJB, MR, LCH, and TDR. AG takes responsibility for the integrity of the data analysis.

Compliance with ethical standards

Conflict of interest

The authors have received grants or honorarium for advisory boards or lectures to the individual or the institution by Amgen (LCH, TDR, TL, and PW), AstraZeneca (PW), Celgene (PW), Pfizer (PW), Lilly (LCH), Alexion (LCH), UCB (LCH), Novartis (PW, TL), Merck (LCH, TDR), PharmaMar (PW), Roche (PW) and TEVA (PW). AG, JDK, AJB, and MR declare no conflict of interest.

References

  1. 1.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49:1374–1403CrossRefPubMedGoogle Scholar
  2. 2.
    Altundag K, Ibrahim NK (2006) Aromatase inhibitors in breast cancer: an overview. Oncologist 11(6):553–562CrossRefPubMedGoogle Scholar
  3. 3.
    Criscitiello C, Fumagalli D, Saini KS (2011) Tamoxifen in early-stage estrogen receptor- positive breast cancer : overview of clinical use and molecular biomarkers for patient selection. Onco Targets Ther 4:1–11Google Scholar
  4. 4.
    Early Breast Cancer Trialists´Collaborative Group (2015) Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet (London, England). Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Open Access article distributed under the terms of CC BY. 386:1341–52Google Scholar
  5. 5.
    Fabian CJ (2007) The what, why and how of aromatase inhibitors : hormonal agents for treatment and prevention of breast cancer. Int J Clin Pract 61:2051–2063CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Coombes R, Kilburn L, Snowdon C, Paridaens R, Coleman R, Jones S et al (2007) Survival and safety of exemestane versus tamoxifen after 2–3 years’ tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet (London, England) 369:559–570CrossRefGoogle Scholar
  7. 7.
    Files JA, Ko MG, Pruthi S, Tusbufhjft S, Nbobhfnfou GPS, Dpnnpo PG et al (2002) Review for in clinicians managing aromatase inhibitors in breast cancer survivors : not just for oncologists. Mayo Clin Proc 85:560–566CrossRefGoogle Scholar
  8. 8.
    Martinkovich S (2014) Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 9:1437–1452PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ward R, Morgan G, Dalley D, Kelly P (1993) Tamoxifen reduces bone turnover and prevents lumbar spine and proximal femoral bone loss in early postmenopausal women. Bone Min 22:87–94CrossRefGoogle Scholar
  10. 10.
    Bauer M, Bryce J, Hadji P (2012) Aromatase inhibitor-associated bone loss and its management with bisphosphonates in patients with breast cancer. Breast Cancer Targets Ther 4:91–101CrossRefGoogle Scholar
  11. 11.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192CrossRefPubMedGoogle Scholar
  12. 12.
    Van Bezooijen RL, Papapoulos SE, Lo CWGM (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16:319–327CrossRefGoogle Scholar
  13. 13.
    Appelman-Dijkstra NM, Papapoulos SE (2016) Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int 98:370–380CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33:747–783CrossRefPubMedGoogle Scholar
  15. 15.
    Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clézardin P et al (2007) Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 8(97):964–970Google Scholar
  16. 16.
    Bu G, Lu W, Liu CC, Selander K, Yoneda T, Hall C et al (2008) Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases. Int J Cancer 123:1034–1042CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Forget M, Turcotte S, Beauseigle D, Godin-Ethier J, Pelletier S, Martin J et al (2007) The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br J Cancer 96:646–653CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mendoza-Villanueva D, Zeef L, Shore P (2011) Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBF β- dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res 13:R106CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Brufsky AM (2008) Cancer treatment-induced bone loss: pathophysiology and clinical perspectives. Oncologist 13:187–195CrossRefPubMedGoogle Scholar
  20. 20.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593CrossRefPubMedGoogle Scholar
  21. 21.
    Hadji P, Ziller M, Kieback DG, Menschik T, Kalder M, Kuck J et al (2009) The effect of exemestane or tamoxifen on markers of bone turnover: results of a German sub-study of the tamoxifen exemestane adjuvant multicentre (TEAM) trial. Breast 18:159–164CrossRefPubMedGoogle Scholar
  22. 22.
    Eastell R, Adams JE, Coleman RE, Howell A, Hannon RA, Cuzick J (2008) Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol 26:1051–1058CrossRefPubMedGoogle Scholar
  23. 23.
    Gaillard S, Stearns V (2011) Aromatase inhibitor-associated bone and musculoskeletal eff ects: new evidence defining etiology and strategies for management. Breast Cancer Res 13:1–11CrossRefGoogle Scholar
  24. 24.
    Michael H, Härkönen P, Kangas L, Väänänen H, Hentunen T (2007) Differential effects of selective oestrogen receptor modulators (SERMs) tamoxifen, ospemifene and raloxifene on human osteoclasts in vitro. Br J Pharmacol 151:384–395CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Migliaccio S, Brama M, Spera G (2007) The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators), and parathyroid hormone on bone remodeling in osteoporosis. Clin Interv Aging 2:55–64CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lehenkari P, Parikka V, Rautiala TJ, Weckstro M (2003) The effects of tamoxifen and toremifene on bone cells involve changes. J Bone Miner Res 18:473–481CrossRefPubMedGoogle Scholar
  27. 27.
    Perry MJ, Gujra S, Whitworth T, Tobias JH (2005) Tamoxifen stimulates cancellous bone formation in long bones of female mice. Endocrinology 146:1060–1065CrossRefPubMedGoogle Scholar
  28. 28.
    Kyvernitakis I, Rachner TD, Urbschat A, Hars O, Hofbauer LC, Hadji P (2014) Effect of aromatase inhibition on serum levels of sclerostin and dickkopf- 1, bone turnover markers and bone mineral density in women with breast cancer. J Cancer Res Clin Oncol 140:1671–1680CrossRefPubMedGoogle Scholar
  29. 29.
    Rachner TD, Göbel A, Thiele S, Rauner M, Benad-Mehner P, Hadji P et al (2014) Dickkopf-1 is regulated by the mevalonate pathway in breast cancer. Breast Cancer Res 16:R20CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Göbel A, Browne AJ, Thiele S, Rauner M, Hofbauer LC, Rachner TD (2015) Potentiated suppression of Dickkopf-1 in breast cancer by combined administration of the mevalonate pathway inhibitors zoledronic acid and statins. Breast Cancer Res Treat 154:623–631CrossRefPubMedGoogle Scholar
  31. 31.
    Dovjak P, Dorfer S, Föger-samwald U, Kudlacek S, Marculescu R, Pietschmann P (2014) Serum levels of sclerostin and Dickkopf-1: effects of age, gender and fracture status. Gerontology 60:493–501CrossRefPubMedGoogle Scholar
  32. 32.
    Mödder UI, Hoey KA, Amin S, Mccready LK, Achenbach SJ, Mo UI et al (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26:373–379CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andy Göbel
    • 1
    • 2
    Email author return OK on get
  • Jan D. Kuhlmann
    • 2
    • 3
    • 4
  • Theresa Link
    • 2
    • 3
    • 4
  • Pauline Wimberger
    • 2
    • 3
    • 4
  • Andrew J. Browne
    • 1
    • 2
  • Martina Rauner
    • 1
    • 2
  • Lorenz C. Hofbauer
    • 1
    • 2
    • 5
  • Tilman D. Rachner
    • 1
    • 2
  1. 1.Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, TU Dresden Medical CenterTechnische Universität DresdenDresdenGermany
  2. 2.German Cancer Consortium (DKTK)Partner site Dresden and German Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  4. 4.National Center for Tumor Diseases (NCT)Partner Site DresdenDresdenGermany
  5. 5.Center for Healthy AgingTechnische Universität DresdenDresdenGermany

Personalised recommendations