Advertisement

Breast Cancer Research and Treatment

, Volume 165, Issue 1, pp 97–107 | Cite as

A randomized, placebo-controlled trial of diindolylmethane for breast cancer biomarker modulation in patients taking tamoxifen

  • Cynthia A. ThomsonEmail author
  • H. H. Sherry Chow
  • Betsy C. Wertheim
  • Denise J. Roe
  • Alison Stopeck
  • Gertraud Maskarinec
  • Maria Altbach
  • Pavani Chalasani
  • Chuan Huang
  • Meghan B. Strom
  • Jean-Philippe Galons
  • Patricia A. Thompson
Clinical trial

Abstract

Purpose

Diindolylmethane (DIM), a bioactive metabolite of indole-3-carbinol found in cruciferous vegetables, has proposed cancer chemoprevention activity in the breast. There is limited evidence of clinically relevant activity of DIM or long-term safety data of its regular use. A randomized, double-blind, placebo-controlled trial was conducted to determine the activity and safety of combined use of BioResponse DIM® (BR-DIM) with tamoxifen.

Methods

Women prescribed tamoxifen (n = 130) were randomly assigned oral BR-DIM at 150 mg twice daily or placebo, for 12 months. The primary study endpoint was change in urinary 2/16α-hydroxyestrone (2/16α-OHE1) ratio. Changes in 4-hydroxyestrone (4-OHE1), serum estrogens, sex hormone-binding globulin (SHBG), breast density, and tamoxifen metabolites were assessed.

Results

Ninety-eight women (51 placebo, 47 DIM) completed intervention; compliance with treatment was >91%. BR-DIM increased the 2/16α-OHE1 ratio (+3.2 [0.8, 8.4]) compared to placebo (−0.7 [−1.7, 0.8], P < 0.001). Serum SHBG increased with BR-DIM compared to placebo (+25 ± 22 and +1.1 ± 19 nmol/L, respectively). No change in breast density measured by mammography or by MRI was observed. Plasma tamoxifen metabolites (endoxifen, 4-OH tamoxifen, and N-desmethyl-tamoxifen) were reduced in women receiving BR-DIM versus placebo (P < 0.001). Minimal adverse events were reported and did not differ by treatment arm.

Conclusion

In patients taking tamoxifen for breast cancer, daily BR-DIM promoted favorable changes in estrogen metabolism and circulating levels of SHBG. Further research is warranted to determine whether BR-DIM associated decreases in tamoxifen metabolites, including effects on endoxifen levels, attenuates the clinical benefit of tamoxifen. Trial Registration: ClinicalTrials.gov NCT01391689.

Keywords

Breast cancer Diindolylmethane Tamoxifen 

Notes

Acknowledgements

The investigators wish to acknowledge the contributions of Julie West, study coordinator, Amelia Lobos, study agent manager, Catherine Cordova for performing the estrogen assays and Jean-Phillippe Galons and Jie Ding for assisting with FWR-MRI image processing. The investigators also would like to thank Drs. Steven Stratton, Robert Livingston, and Chiu-Hsieh (Paul) Hsu for serving as members of the ad hoc Data and Safety Monitoring Committee. This research supported by National Institutes of Health, National Cancer Institute grant numbers CAT R01 CA149417 and CCSG-P30CA023074 as well as a research grant from the Academy of Nutrition and Dietetics, Oncology Nutrition Practice Group.

Funding

This work was support by The National Cancer Institute (NCI) at the National Institutes of Health (NIH) (CAT R01 CA149417 and CA161534), as well as NCI funding provided to The University of Arizona Comprehensive Cancer Center Support Grant (CCSG-P30CA023074) including support of the Behavioral Measurements and Interventions, Analytical Chemistry, Cancer Imaging, and Biostatistics Shared Resources as well as the Clinical Trials Office and the Data Safety and Monitoring Board.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest to disclose.

Supplementary material

10549_2017_4292_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. 1.
    Shin SC, Choi JS, Li X (2006) Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int J Pharm 313(1–2):144–149. doi: 10.1016/j.ijpharm.2006.01.028 CrossRefPubMedGoogle Scholar
  2. 2.
    Sommer AK, Hermawan A, Mickler FM, Ljepoja B, Knyazev P, Brauchle C, Ullrich A, Wagner E, Roidl A (2016) Salinomycin co-treatment enhances tamoxifen cytotoxicity in luminal A breast tumor cells by facilitating lysosomal degradation of receptor tyrosine kinases. Oncotarget. doi: 10.18632/oncotarget.10459 Google Scholar
  3. 3.
    Manni A, El-Bayoumy K, Skibinski CG, Thompson HJ, Santucci-Pereira J, Bidinotto LT, Russo J (2015) Combination of antiestrogens and omega-3 fatty acids for breast cancer prevention. Biomed Res Int 2015:638645. doi: 10.1155/2015/638645 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mason JK, Thompson LU (2014) Flaxseed and its lignan and oil components: can they play a role in reducing the risk of and improving the treatment of breast cancer? Appl Physiol Nutr Metab 39(6):663–678. doi: 10.1139/apnm-2013-0420 CrossRefPubMedGoogle Scholar
  5. 5.
    Greenlee H, Kwan ML, Ergas IJ, Strizich G, Roh JM, Wilson AT, Lee M, Sherman KJ, Ambrosone CB, Hershman DL, Neugut AI, Kushi LH (2014) Changes in vitamin and mineral supplement use after breast cancer diagnosis in the Pathways Study: a prospective cohort study. BMC Cancer 14:382. doi: 10.1186/1471-2407-14-382 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gunther S, Patterson RE, Kristal AR, Stratton KL, White E (2004) Demographic and health-related correlates of herbal and specialty supplement use. J Am Diet Assoc 104(1):27–34. doi: 10.1016/j.jada.2003.10.009 CrossRefPubMedGoogle Scholar
  7. 7.
    Miller MF, Bellizzi KM, Sufian M, Ambs AH, Goldstein MS, Ballard-Barbash R (2008) Dietary supplement use in individuals living with cancer and other chronic conditions: a population-based study. J Am Diet Assoc 108(3):483–494. doi: 10.1016/j.jada.2007.12.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Henderson JW, Donatelle RJ (2004) Complementary and alternative medicine use by women after completion of allopathic treatment for breast cancer. Altern Ther Health Med 10(1):52–57PubMedGoogle Scholar
  9. 9.
    Ciska E, Verkerk R, Honke J (2009) Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3′-diindolylmethane in fermented cabbage. J Agric Food Chem 57(6):2334–2338. doi: 10.1021/jf803477w CrossRefPubMedGoogle Scholar
  10. 10.
    Thomson CA, Ho E, Strom MB (2016) Chemopreventive properties of 3,3′-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev 74(7):432–443. doi: 10.1093/nutrit/nuw010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thomson CA, Rock CL, Thompson PA, Caan BJ, Cussler E, Flatt SW, Pierce JP (2011) Vegetable intake is associated with reduced breast cancer recurrence in tamoxifen users: a secondary analysis from the Women’s Healthy Eating and Living Study. Breast Cancer Res Treat 125(2):519–527. doi: 10.1007/s10549-010-1014-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Fujioka N, Ainslie-Waldman CE, Upadhyaya P, Carmella SG, Fritz VA, Rohwer C, Fan Y, Rauch D, Le C, Hatsukami DK, Hecht SS (2014) Urinary 3,3′-diindolylmethane: a biomarker of glucobrassicin exposure and indole-3-carbinol uptake in humans. Cancer Epidemiol Biomark Prev 23(2):282–287. doi: 10.1158/1055-9965.EPI-13-0645 CrossRefGoogle Scholar
  13. 13.
    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236. doi: 10.1016/j.phrs.2007.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dalessandri KM, Firestone GL, Fitch MD, Bradlow HL, Bjeldanes LF (2004) Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer 50(2):161–167. doi: 10.1207/s15327914nc5002_5 CrossRefPubMedGoogle Scholar
  15. 15.
    Lord RS, Bongiovanni B, Bralley JA (2002) Estrogen metabolism and the diet-cancer connection: rationale for assessing the ratio of urinary hydroxylated estrogen metabolites. Altern Med Rev 7(2):112–129PubMedGoogle Scholar
  16. 16.
    Martucci C, Fishman J (1977) Direction of estradiol metabolism as a control of its hormonal action–uterotrophic activity of estradiol metabolites. Endocrinology 101(6):1709–1715. doi: 10.1210/endo-101-6-1709 CrossRefPubMedGoogle Scholar
  17. 17.
    Ziegler RG, Fuhrman BJ, Moore SC, Matthews CE (2015) Epidemiologic studies of estrogen metabolism and breast cancer. Steroids 99 (Pt A):67–75. doi: 10.1016/j.steroids.2015.02.015
  18. 18.
    Rajoria S, Suriano R, Parmar PS, Wilson YL, Megwalu U, Moscatello A, Bradlow HL, Sepkovic DW, Geliebter J, Schantz SP, Tiwari RK (2011) 3,3′-diindolylmethane modulates estrogen metabolism in patients with thyroid proliferative disease: a pilot study. Thyroid 21(3):299–304. doi: 10.1089/thy.2010.0245 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Okino ST, Pookot D, Basak S, Dahiya R (2009) Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention. Cancer Prev Res (Phila) 2(3):251–256. doi: 10.1158/1940-6207.CAPR-08-0146 CrossRefGoogle Scholar
  20. 20.
    Vivar OI, Saunier EF, Leitman DC, Firestone GL, Bjeldanes LF (2010) Selective activation of estrogen receptor-beta target genes by 3,3′-diindolylmethane. Endocrinology 151(4):1662–1667. doi: 10.1210/en.2009-1028 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Xu X, Veenstra TD, Fox SD, Roman JM, Issaq HJ, Falk R, Saavedra JE, Keefer LK, Ziegler RG (2005) Measuring fifteen endogenous estrogens simultaneously in human urine by high-performance liquid chromatography-mass spectrometry. Anal Chem 77(20):6646–6654. doi: 10.1021/ac050697c CrossRefPubMedGoogle Scholar
  22. 22.
    Nelson RE, Grebe SK, O’Kane DJ, ingh RJ (2004) Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem 50(2):373–384. doi: 10.1373/clinchem.2003.025478 CrossRefPubMedGoogle Scholar
  23. 23.
    Byng JW, Yaffe MJ, Jong RA, Shumak RS, Lockwood GA, Tritchler DL, Boyd NF (1998) Analysis of mammographic density and breast cancer risk from digitized mammograms. Radiographics 18(6):1587–1598. doi: 10.1148/radiographics.18.6.9821201 CrossRefPubMedGoogle Scholar
  24. 24.
    Boyd NF, Lockwood GA, Byng JW, Little LE, Yaffe MJ, Tritchler DL (1998) The relationship of anthropometric measures to radiological features of the breast in premenopausal women. Br J Cancer 78(9):1233–1238CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Huang C AM Multi-mask multi-seed free growing field map estimation algorithm for iterative multi-point water-fat decomposition. In: ISMRM 17th Annual Scientific Meeting & Exhibition, Honolulu, Hawaii, USA, 2009Google Scholar
  26. 26.
    Zhong X, Nickel MD, Kannengiesser SA, Dale BM, Kiefer B, Bashir MR (2014) Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med 72(5):1353–1365. doi: 10.1002/mrm.25054 CrossRefPubMedGoogle Scholar
  27. 27.
    Arthur D, Vassilvitskii S k-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007. Society for Industrial and Applied Mathematics, pp 1027–1035Google Scholar
  28. 28.
    Rosado-Toro JA, Barr T, Galons JP, Marron MT, Stopeck A, Thomson C, Thompson P, Carroll D, Wolf E, Altbach MI, Rodriguez JJ (2015) Automated breast segmentation of fat and water MR images using dynamic programming. Acad Radiol 22(2):139–148. doi: 10.1016/j.acra.2014.09.015 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thomson CA, Thompson PA, Wertheim BC, Roe D, Marron MT, Galons J-P, Kupinski MA, Altbach MI, Maskarinec G, Stopeck A (2015) Abstract P6-01-18: 2-Hydroxyestrone is associated with breast density measured by mammography and fat: water ratio magnetic resonance imaging in women taking tamoxifen. Cancer Research 75 (9 Supplement):P6-01-18-P06-01-18Google Scholar
  30. 30.
    Jie Ding PAT, Marilyn T Marron, Maria Altbach, Denise Roe, Jean-Philippe Galons, Cynthia A Thomson, Fang Wang, Alison Stopeck, and Chuan Huang. The test-retest reliability of fat-water ratio MRI derived breast density measurements and automated breast segmentation. In: ISMRM 24th Annual Scientific Meeting & Exhibition, Singapore, 2016Google Scholar
  31. 31.
    Teunissen SF, Rosing H, Schinkel AH, Schellens JH, Beijnen JH (2010) Bioanalytical methods for determination of tamoxifen and its phase I metabolites: a review. Anal Chim Acta 683(1):21–37. doi: 10.1016/j.aca.2010.10.009 CrossRefPubMedGoogle Scholar
  32. 32.
    Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, Nikoloff DM, Hillman G, Fontecha MR, Lawrence HJ, Parker BA, Wu AH, Pierce JP (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89(5):718–725. doi: 10.1038/clpt.2011.32 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bradlow HL (2008) Review. Indole-3-carbinol as a chemoprotective agent in breast and prostate cancer. In Vivo 22(4):441–445PubMedGoogle Scholar
  34. 34.
    Schneider J, Huh MM, Bradlow HL, Fishman J (1984) Antiestrogen action of 2-hydroxyestrone on MCF-7 human breast cancer cells. J Biol Chem 259(8):4840–4845PubMedGoogle Scholar
  35. 35.
    Vandewalle B, Lefebvre J (1989) Opposite effects of estrogen and catecholestrogen on hormone-sensitive breast cancer cell growth and differentiation. Mol Cell Endocrinol 61(2):239–246CrossRefPubMedGoogle Scholar
  36. 36.
    Muti P, Bradlow HL, Micheli A, Krogh V, Freudenheim JL, Schunemann HJ, Stanulla M, Yang J, Sepkovic DW, Trevisan M, Berrino F (2000) Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology 11(6):635–640CrossRefPubMedGoogle Scholar
  37. 37.
    Falk RT, Brinton LA, Dorgan JF, Fuhrman BJ, Veenstra TD, Xu X, Gierach GL (2013) Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res 15(2):R34. doi: 10.1186/bcr3416 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, Buys SS, Isaacs C, Keefer LK, Veenstra TD, Berg CD, Hoover RN, Ziegler RG (2012) Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 104(4):326–339. doi: 10.1093/jnci/djr531 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ursin G, London S, Stanczyk FZ, Gentzschein E, Paganini-Hill A, Ross RK, Pike MC (1999) Urinary 2-hydroxyestrone/16alpha-hydroxyestrone ratio and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91(12):1067–1072CrossRefPubMedGoogle Scholar
  40. 40.
    Key T, Appleby P, Barnes I, Reeves G (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94(8):606–616CrossRefPubMedGoogle Scholar
  41. 41.
    Duggan C, Stanczyk F, Campbell K, Neuhouser ML, Baumgartner RN, Baumgartner KB, Bernstein L, Ballard R, McTiernan A (2016) Associations of sex steroid hormones with mortality in women with breast cancer. Breast Cancer Res Treat 155(3):559–567. doi: 10.1007/s10549-016-3704-4 CrossRefPubMedGoogle Scholar
  42. 42.
    He XY, Liao YD, Yu S, Zhang Y, Wang R (2015) Sex hormone binding globulin and risk of breast cancer in postmenopausal women: a meta-analysis of prospective studies. Horm Metab Res 47(7):485–490. doi: 10.1055/s-0034-1395606 CrossRefPubMedGoogle Scholar
  43. 43.
    Catalano MG, Frairia R, Boccuzzi G, Fortunati N (2005) Sex hormone-binding globulin antagonizes the anti-apoptotic effect of estradiol in breast cancer cells. Mol Cell Endocrinol 230(1–2):31–37. doi: 10.1016/j.mce.2004.11.005 CrossRefPubMedGoogle Scholar
  44. 44.
    Kahn SM, Li YH, Hryb DJ, Nakhla AM, Romas NA, Cheong J, Rosner W (2008) Sex hormone-binding globulin influences gene expression of LNCaP and MCF-7 cells in response to androgen and estrogen treatment. Adv Exp Med Biol 617:557–564. doi: 10.1007/978-0-387-69080-3_57 CrossRefPubMedGoogle Scholar
  45. 45.
    Gierach GL, Patel DA, Falk RT, Pfeiffer RM, Geller BM, Vacek PM, Weaver DL, Chicoine RE, Shepherd JA, Mahmoudzadeh AP, Wang J, Fan B, Herschorn SD, Xu X, Veenstra T, Fuhrman B, Sherman ME, Brinton LA (2015) Relationship of serum estrogens and metabolites with area and volume mammographic densities. Horm Cancer 6(2–3):107–119. doi: 10.1007/s12672-015-0216-3 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Riza E, dos Santos Silva I, De Stavola B, Bradlow HL, Sepkovic DW, Linos D, Linos A (2001) Urinary estrogen metabolites and mammographic parenchymal patterns in postmenopausal women. Cancer Epidemiol Biomark Prev 10(6):627–634Google Scholar
  47. 47.
    Chow CK, Venzon D, Jones EC, Premkumar A, O’Shaughnessy J, Zujewski J (2000) Effect of tamoxifen on mammographic density. Cancer Epidemiol Biomark Prev 9(9):917–921Google Scholar
  48. 48.
    Mullooly M, Pfeiffer RM, Nyante SJ, Heckman-Stoddard BM, Perloff M, Jatoi I, Brinton LA, Aiello Bowles EJ, Hoover RN, Glass A, Berrington de Gonzalez A, Sherman ME, Gierach GL (2016) Mammographic density as a biosensor of tamoxifen effectiveness in adjuvant endocrine treatment of breast cancer: opportunities and implications. J Clin Oncol 34(18):2093–2097. doi: 10.1200/JCO.2015.64.4492 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    van Nes JG, Beex LV, Seynaeve C, Putter H, Sramek A, Lardenoije S, Duijm-de Carpentier M, Van Rongen I, Nortier JW, Zonderland HM, van de Velde CJ (2015) Minimal impact of adjuvant exemestane or tamoxifen treatment on mammographic breast density in postmenopausal breast cancer patients: a Dutch TEAM trial analysis. Acta Oncol 54(3):349–360. doi: 10.3109/0284186X.2014.964809 CrossRefPubMedGoogle Scholar
  50. 50.
    Fuentes F, Paredes-Gonzalez X, Kong AT (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep 1(3):179–196. doi: 10.1007/s40495-015-0017-y CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Godugu C, Doddapaneni R, Safe SH, Singh M (2016) Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer. Eur J Pharm Biopharm 108:168–179. doi: 10.1016/j.ejpb.2016.08.006 CrossRefPubMedGoogle Scholar
  52. 52.
    Safe S, Cheng Y, Jin UH (2017) The aryl hydrocarbon receptor (AhR) as a drug target for cancer chemotherapy. Curr Opin Toxicol 2:24–29. doi: 10.1016/j.cotox.2017.01.012 CrossRefPubMedGoogle Scholar
  53. 53.
    Wang W, Lv M, Huangfu C, Wang F, Zhang J (2015) 3,3′-Diindolylmethane: a Promising sensitizer of gamma-irradiation. Biomed Res Int 2015:465105. doi: 10.1155/2015/465105 PubMedPubMedCentralGoogle Scholar
  54. 54.
    Parkin DR, Malejka-Giganti D (2004) Differences in the hepatic P450-dependent metabolism of estrogen and tamoxifen in response to treatment of rats with 3,3′-diindolylmethane and its parent compound indole-3-carbinol. Cancer Detect Prev 28(1):72–79. doi: 10.1016/j.cdp.2003.11.006 CrossRefPubMedGoogle Scholar
  55. 55.
    Crowell JA, Page JG, Levine BS, Tomlinson MJ, Hebert CD (2006) Indole-3-carbinol, but not its major digestive product 3,3′-diindolylmethane, induces reversible hepatocyte hypertrophy and cytochromes P450. Toxicol Appl Pharmacol 211(2):115–123. doi: 10.1016/j.taap.2005.06.011 CrossRefPubMedGoogle Scholar
  56. 56.
    Wu TY, Huang Y, Zhang C, Su ZY, Boyanapalli S, Khor TO, Wang H, Lin H, Gounder M, Kagan L, Androulakis IP, Kong AN (2015) Pharmacokinetics and pharmacodynamics of 3,3′-diindolylmethane (DIM) in regulating gene expression of phase II drug metabolizing enzymes. J Pharmacokinet Pharmacodyn 42(4):401–408. doi: 10.1007/s10928-015-9421-5 CrossRefPubMedGoogle Scholar
  57. 57.
    Decensi A, Robertson C, Viale G, Pigatto F, Johansson H, Kisanga ER, Veronesi P, Torrisi R, Cazzaniga M, Mora S, Sandri MT, Pelosi G, Luini A, Goldhirsch A, Lien EA, Veronesi U (2003) A randomized trial of low-dose tamoxifen on breast cancer proliferation and blood estrogenic biomarkers. J Natl Cancer Inst 95(11):779–790CrossRefPubMedGoogle Scholar
  58. 58.
    Decensi A, Robertson C, Guerrieri-Gonzaga A, Serrano D, Cazzaniga M, Mora S, Gulisano M, Johansson H, Galimberti V, Cassano E, Moroni SM, Formelli F, Lien EA, Pelosi G, Johnson KA, Bonanni B (2009) Randomized double-blind 2 × 2 trial of low-dose tamoxifen and fenretinide for breast cancer prevention in high-risk premenopausal women. J Clin Oncol 27(23):3749–3756. doi: 10.1200/JCO.2008.19.3797 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, Forbes JF, Warren RM (2011) Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst 103(9):744–752. doi: 10.1093/jnci/djr079 CrossRefPubMedGoogle Scholar
  60. 60.
    Johansson H, Bonanni B, Gandini S, Guerrieri-Gonzaga A, Cazzaniga M, Serrano D, Macis D, Puccio A, Sandri MT, Gulisano M, Formelli F, Decensi A (2013) Circulating hormones and breast cancer risk in premenopausal women: a randomized trial of low-dose tamoxifen and fenretinide. Breast Cancer Res Treat 142(3):569–578. doi: 10.1007/s10549-013-2768-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Cynthia A. Thomson
    • 1
    • 2
    Email author
  • H. H. Sherry Chow
    • 2
  • Betsy C. Wertheim
    • 2
  • Denise J. Roe
    • 2
    • 3
  • Alison Stopeck
    • 4
  • Gertraud Maskarinec
    • 5
  • Maria Altbach
    • 6
  • Pavani Chalasani
    • 2
  • Chuan Huang
    • 7
  • Meghan B. Strom
    • 8
  • Jean-Philippe Galons
    • 2
    • 6
  • Patricia A. Thompson
    • 4
    • 9
  1. 1.Department of Health Promotion SciencesMel and Enid Zuckerman College of Public Health, University of ArizonaTucsonUSA
  2. 2.University of Arizona Cancer CenterTucsonUSA
  3. 3.Department of Epidemiology and BiostatisticsMel and Enid Zuckerman College of Public Health, University of ArizonaTucsonUSA
  4. 4.Stony Brook Cancer CenterStony Brook UniversityStony BrookUSA
  5. 5.Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluUSA
  6. 6.Department of Medical ImagingCollege of Medicine, University of ArizonaTucsonUSA
  7. 7.Departments of Radiology, Psychiatry, School of MedicineStony Brook UniversityStony BrookUSA
  8. 8.Department of Nutritional SciencesUniversity of ArizonaTucsonUSA
  9. 9.Department of Pathology, School of MedicineStony Brook UniversityStony BrookUSA

Personalised recommendations