Advertisement

Breast Cancer Research and Treatment

, Volume 164, Issue 1, pp 119–131 | Cite as

Adherence to guidelines and breast cancer patients survival: a population-based cohort study analyzed with a causal inference approach

  • Anita AndreanoEmail author
  • Paola Rebora
  • Maria Grazia Valsecchi
  • Antonio Giampiero Russo
Epidemiology

Abstract

Purpose

There is a lack of real-world studies evaluating the impact on survival of an evidence-based pathway of care in breast cancer. The aim of this work is to investigate the effect of adherence to guidelines on long-term survival for a cohort of Italian breast cancer patients.

Methods

The cohort included incident female breast cancer cases (2007–12), from the registry of the Milan province (Italy), not metastatic at diagnosis and receiving primary surgery. We selected sets of indicators, according to patient and tumor characteristics. We then defined the pathway of care as adherent to guidelines if it fulfilled at least 80% of the indicators. Indicators were measured using different administrative health databases linked on a unique key. A causal inference approach was used, drawing a directed acyclic graph and fitting an inverse probability weighted marginal structural model, accounting for patient’s demographic, socioeconomic and tumor characteristics.

Results

The analysis included 6333 patients, 69% of them were classified as having an adherent care. Mean age was 61 years (standard deviation, 13.6 years) and half of the patients were in Stage I (50%) at diagnosis. Median follow-up time was 5.6 years. Overall, 5-year survival was 90% (95% CI, 89–91%). The estimated risk of death was 30% lower for patients with adherent than nonadherent care (hazard ratio [HR], 0.66; 95% CI, 0.55–0.77).

Conclusions

Our study confirms, in real-world care, the impact on survival of receiving a care pathway adherent to guidelines in non-metastatic breast cancer patients.

Keywords

Breast cancer care Adherence to guidelines Survival Causal inference Administrative health databases Process indicators 

Abbreviations

CI

Confidence interval

DAG

Directed acyclic graph

HR

Hazard ratio

IPW

Inverse probability weighted

RCT

Randomized controlled trial

Notes

Funding

Supported by grant RF-2011-02348959 from the Italian Ministry of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All analyses were performed in compliance with the Italian law on health data protection.

Supplementary material

10549_2017_4210_MOESM1_ESM.docx (198 kb)
Supplementary material 1 (DOCX 197 kb)
10549_2017_4210_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 21 kb)
10549_2017_4210_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 19 kb)

References

  1. 1.
    Woolf SH (1993) Practice guidelines: a new reality in medicine. III. Impact on patient care. Arch Intern Med 153:2646–2655. doi: 10.1001/archinte.1993.00410230060008 CrossRefPubMedGoogle Scholar
  2. 2.
    Davis D (2006) Assessing and scaling the knowledge pyramid: the good-guideline guide. Can Med Assoc J 174:337–338. doi: 10.1503/cmaj.051611 CrossRefGoogle Scholar
  3. 3.
    Berlin JA, Golub RM (2014) Meta-analysis as evidence: building a better pyramid. JAMA 312:603. doi: 10.1001/jama.2014.8167 CrossRefPubMedGoogle Scholar
  4. 4.
    Brouwers MC, Kho ME, Browman GP et al (2010) AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ Can Med Assoc J 182:E839–E842. doi: 10.1503/cmaj.090449 CrossRefGoogle Scholar
  5. 5.
    McMahon AD (2002) Study control, violators, inclusion criteria and defining explanatory and pragmatic trials. Stat Med 21:1365–1376. doi: 10.1002/sim.1120 CrossRefPubMedGoogle Scholar
  6. 6.
    Mehta RH, Chen AY, Alexander KP et al (2015) Doing the right things and doing them the right way: association between hospital guideline adherence, dosing safety, and outcomes among patients with acute coronary syndrome. Circulation 131:980–987. doi: 10.1161/CIRCULATIONAHA.114.013451 CrossRefPubMedGoogle Scholar
  7. 7.
    Dawes AJ, Sacks GD, Cryer HG et al (2015) Compliance with evidence-based guidelines and interhospital variation in mortality for patients with severe traumatic brain injury. JAMA Surg 150:965–972. doi: 10.1001/jamasurg.2015.1678 CrossRefPubMedGoogle Scholar
  8. 8.
    Bristow RE, Chang J, Ziogas A et al (2015) Impact of national cancer institute comprehensive cancer centers on ovarian cancer treatment and survival. J Am Coll Surg 220:940–950. doi: 10.1016/j.jamcollsurg.2015.01.056 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schroeck FR, Kaufman SR, Jacobs BL et al (2014) Adherence to performance measures and outcomes among men treated for prostate cancer. J Urol 192:743–748. doi: 10.1016/j.juro.2014.03.091 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Boland GM, Chang GJ, Haynes AB et al (2013) Association between adherence to national comprehensive cancer network treatment guidelines and improved survival in patients with colon cancer: guideline treatment improves survival. Cancer 119:1593–1601. doi: 10.1002/cncr.27935 CrossRefPubMedGoogle Scholar
  11. 11.
    van de Water W, Bastiaannet E, Dekkers OM et al (2012) Adherence to treatment guidelines and survival in patients with early-stage breast cancer by age at diagnosis. Br J Surg 99:813–820. doi: 10.1002/bjs.8743 CrossRefPubMedGoogle Scholar
  12. 12.
    Feinstein AR (1985) Clinical epidemiology: the architecture of clinical research. Saunders, PhiladelphiaGoogle Scholar
  13. 13.
    Cheng SH, Wang CJ, Lin J-L et al (2009) Adherence to quality indicators and survival in patients with breast cancer. Med Care 47:217–225. doi: 10.1097/MLR.0b013e3181893c4a CrossRefPubMedGoogle Scholar
  14. 14.
    Hernan MA (2006) Estimating causal effects from epidemiological data. J Epidemiol Community Health 60:578–586. doi: 10.1136/jech.2004.029496 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Williamson EJ, Aitken Z, Lawrie J et al (2014) Introduction to causal diagrams for confounder selection. Respirology 19:303–311. doi: 10.1111/resp.12238 CrossRefPubMedGoogle Scholar
  16. 16.
    Zagouri F, Liakou P, Bartsch R et al (2015) Discrepancies between ESMO and NCCN breast cancer guidelines: an appraisal. The Breast 24:513–523. doi: 10.1016/j.breast.2015.02.031 CrossRefPubMedGoogle Scholar
  17. 17.
    National Collaborating Centre for Cancer (2009) Early and locally advanced breast cancer diagnosis and treatment: full guideline. National Collaborating Centre for Cancer, Cardiff https://www.nice.org.uk/guidance/cg80/resources/early-and-locally-advanced-breast-cancer-diagnosis-and-treatment-975682170565. Accessed 12 Dec 2016
  18. 18.
    Senkus E, Kyriakides S, Ohno S et al (2015) Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26:v8–v30. doi: 10.1093/annonc/mdv298 CrossRefPubMedGoogle Scholar
  19. 19.
    Bleicher RJ, Ruth K, Sigurdson ER et al (2016) Time to Surgery and Breast Cancer Survival in the United States. JAMA Oncol 2:330–339. doi: 10.1001/jamaoncol.2015.4508 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meiers P, Cil T, Guller U, Zuber M (2013) Sentinel lymph node biopsy in early-stage breast cancer patients: improved survival through better staging? Langenbecks Arch Surg Dtsch Ges Für Chir 398:687–690. doi: 10.1007/s00423-012-1037-2 CrossRefGoogle Scholar
  21. 21.
    Coates AS, Winer EP, Goldhirsch A et al (2015) Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26:1533–1546. doi: 10.1093/annonc/mdv221 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Biglia N, Ponzone R, Bounous VE et al (2014) Role of re-excision for positive and close resection margins in patients treated with breast-conserving surgery. Breast Edinb Scotl 23:870–875. doi: 10.1016/j.breast.2014.09.009 CrossRefGoogle Scholar
  23. 23.
    A’Hern RP, Ebbs SR, Baum MB (1988) Does chemotherapy improve survival in advanced breast cancer? A statistical overview. Br J Cancer 57:615–618CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bergh J, Jönsson PE, Glimelius B et al (2001) A systematic overview of chemotherapy effects in breast cancer. Acta Oncol Stockh Swed 40:253–281. doi: 10.1080/02841860120784 CrossRefGoogle Scholar
  25. 25.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. The Lancet 378:771–784. doi: 10.1016/S0140-6736(11)60993-8 CrossRefGoogle Scholar
  26. 26.
    Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106. doi: 10.1016/S0140-6736(05)67887-7 CrossRefPubMedGoogle Scholar
  27. 27.
    McGuire SE, Gonzalez-Angulo AM, Huang EH et al (2007) Postmastectomy radiation improves the outcome of patients with locally advanced breast cancer who achieve a pathologic complete response to neoadjuvant chemotherapy. Int J Radiat Oncol Biol Phys 68:1004–1009. doi: 10.1016/j.ijrobp.2007.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Grunfeld E, Noorani H, McGahan L et al (2002) Surveillance mammography after treatment of primary breast cancer: a systematic review. Breast Edinb Scotl 11:228–235. doi: 10.1054/brst.2001.0404 CrossRefGoogle Scholar
  29. 29.
    Montgomery DA, Krupa K, Cooke TG (2007) Follow-up in breast cancer: does routine clinical examination improve outcome? A systematic review of the literature. Br J Cancer 97:1632–1641. doi: 10.1038/sj.bjc.6604065 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiol Camb Mass 10:37–48CrossRefGoogle Scholar
  31. 31.
    Textor J, Hardt J, Knüppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiol Camb Mass 22:745. doi: 10.1097/EDE.0b013e318225c2be CrossRefGoogle Scholar
  32. 32.
    Andreano A, Anghinoni E, Autelitano M et al (2016) Indicators based on registers and administrative data for breast cancer: routine evaluation of oncologic care pathway can be implemented. J Eval Clin Pract 22:62–70. doi: 10.1111/jep.12436 CrossRefPubMedGoogle Scholar
  33. 33.
    Quan H, Li B, Couris CM et al (2011) Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 173:676–682. doi: 10.1093/aje/kwq433 CrossRefPubMedGoogle Scholar
  34. 34.
    Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 45:613–619. doi: 10.1016/0895-4356(92)90133-8 CrossRefPubMedGoogle Scholar
  35. 35.
    Caranci N, Biggeri A, Grisotto L et al (2010) L’indice di deprivazione italiano a livello di sezione di censimento: definizione, descrizione e associazione con la mortalità. Epidemiol Prev 34:167PubMedGoogle Scholar
  36. 36.
    Nuova Anagrafe Regionale. http://basidati.agid.gov.it/catalogo/bd?code=154911. Accessed 12 Dec 2016
  37. 37.
    Hernán M, Robins JM (2017) Causal survival analysis. In: Causal Inference. Chapman & Hall/CRC, Boca Raton, partII, pp 75–77Google Scholar
  38. 38.
    van Buuren S (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Stat Method Med Res 16:219–242. doi: 10.1177/0962280206074463 CrossRefGoogle Scholar
  39. 39.
    Rubin DB (2004) Multiple imputation for nonresponse in surveys. John Wiley & Sons, HobokenGoogle Scholar
  40. 40.
    SAS Institute Inc. (2013) SAS/STAT Software, Version 9.4., Cary, NCGoogle Scholar
  41. 41.
    Core Team R (2015) R: A Language and Environment for Statistical Computing. R Found Stat Computing, Vienna, AustriaGoogle Scholar
  42. 42.
    Steuten L, Vrijhoef B, Severens H et al (2006) Are we measuring what matters in health technology assessment of disease management? Systematic literature review. Int J Technol Assess Health Care 22:47–57. doi: 10.1017/S0266462306050835 CrossRefPubMedGoogle Scholar
  43. 43.
    Jacobs R, Goddard M (2007) How do performance indicators add up? An examination of composite indicators in public services. Public Money Manag 27:103–110. doi: 10.1111/j.1467-9302.2007.00565.x CrossRefGoogle Scholar
  44. 44.
    Shwartz M, Restuccia JD, Rosen AK (2015) Composite measures of health care provider performance: a description of approaches: composite measures of health care provider performance. Milbank Q 93:788–825. doi: 10.1111/1468-0009.12165 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Reeves D, Campbell SM, Adams J et al (2007) Combining multiple indicators of clinical quality. Med Care 45:489–496. doi: 10.1097/MLR.0b013e31803bb479 CrossRefPubMedGoogle Scholar
  46. 46.
    Huisman M, Kunst A, Andersen O et al (2004) Socioeconomic inequalities in mortality among elderly people in 11 European populations. J Epidemiol Community Health 58:468–475. doi: 10.1136/jech.2003.010496 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Center of Biostatistics for Clinical Epidemiology, School of Medicine and SurgeryUniversity of Milan BicoccaMonzaItaly
  2. 2.Epidemiology UnitAgency for Health Protection of the Province of MilanMilanItaly

Personalised recommendations