Advertisement

Breast Cancer Research and Treatment

, Volume 163, Issue 3, pp 423–434 | Cite as

Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells

  • Sheng Zhang
  • Xiaoping Gao
  • Wei Fu
  • Shengwei Li
  • Limin YueEmail author
Preclinical study

Abstract

Purpose

The extracellular region (EC) of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) contains seven immunoglobulin-like (Ig-like) domains that are required for specific ligand binding and receptor dimerization. Studies of domain 4–7 deletions and substitutions provided insights into the interaction between receptors in the absence of VEGF. In this study, we investigated the effect of domain 4 in ligand-independent VEGFR-2 dimerization and activation in human vascular endothelial cells and human breast cancer cells.

Methods

To confirm the role of domain 4 in ligand-independent receptor dimerization and activation, two VEGFR-2 fragments with and without domain 4, KFP1 and KFP2, were generated by recombinant DNA technology. We measured the affinity of KFP1 and KFP2 with VEGFR-2, and the roles of KFP1 and FKP2 in dimerization and phosphorylation of VEGFR-2. We also evaluated the effect of KFP1 and FKP2 on cell proliferation and migration in HUVECs and in human breast cancer cells.

Results

We showed that KFP1 did not affect the interaction of VEGFR-2 and VEGF but bound VEGFR-2 in the absence of VEGF. Furthermore, cross-linking and cross-linking immunoblotting demonstrated that KFP1 could form a complex with VEGFR-2, which resulted in VEGFR-2 dimerization in the absence of VEGF. Importantly, we found that the KDR fragment with domain 4 induced phosphorylation of VEGFR-2, as well as phosphorylation of downstream receptor kinases in HUVECs and VEGFR-2-positive breast cancer cells. Consistent with these results, this ligand-independent activation of VEGFR-2 also promoted downstream signaling and cell proliferation and migration.

Conclusions

The domain 4 of VEGFR-2 plays an important role in the interaction between VEGFR receptors in the absence of VEGF.

Keywords

VEGFR-2 Domain 4 Dimerization Activation HUVECs Breast cancer cells 

Abbreviations

VEGF

Vascular endothelial growth factor

VEGFR-2

Vascular endothelial growth factor receptor-2

KDR

Kinase insert domain receptor

RTK

Receptor tyrosine kinase

ERK

Extracellular signal-regulated kinase

PLCγ

Phospholipase Cγ

PDGFR

Platelet-derived growth factor receptor

EGFR

Epidermal growth factor receptor

FGFR

Fibroblast growth factor receptor

SCFR

Stem cell factor receptor

ECM

Endothelial cell medium

ELISA

Enzyme-linked immunosorbent assay

Notes

Compliance with ethical standards

Conflict of Interest

All authors declare no actual, potential, or perceived conflict of interest that would prejudice the impartiality of the article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10549_2017_4189_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)
10549_2017_4189_MOESM2_ESM.docx (315 kb)
Supplementary material 2 (DOCX 314 kb)

References

  1. 1.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027CrossRefPubMedGoogle Scholar
  2. 2.
    Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR (2010) Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophy Acta 1806(1):108–121Google Scholar
  3. 3.
    Bachelder RE, Wendt MA, Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62(24):7203–7206PubMedGoogle Scholar
  4. 4.
    Nakopoulou L, Stefanaki K, Panayotopoulou E, Giannopoulou I, Athanassiadou P, Gakiopoulou-Givalou H, Louvrou A (2002) Expression of the vascular endothelial growth factor receptor-2/Flk-1 in breast carcinomas: correlation with proliferation. Hum Pathol 33:863–870CrossRefPubMedGoogle Scholar
  5. 5.
    Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, Mercurio AM (2001) Vascular endothelial growth factor is an autocrine survival factor for Neuropilin-expressing breast carcinoma cells. Cancer Res 61(15):5736–5740PubMedGoogle Scholar
  6. 6.
    Ryden L, Linderholm B, Nielsen NH, Emdin S, Jonsson PE, Landberg G (2003) Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer. Breast Cancer Res Treat 82(3):147–154CrossRefPubMedGoogle Scholar
  7. 7.
    Koukourakis MI, Limberis V, Tentes I, Kontomanolis E, Kortsaris A, Sivridis E, Giatromanolaki A (2011) Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine 53(3):370–375CrossRefPubMedGoogle Scholar
  8. 8.
    Ryden L, Jirstrom K, Halund M, Stal O, Ferno M (2010) Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res Treat 120(2):491–498CrossRefPubMedGoogle Scholar
  9. 9.
    Yarden Y, Escobedo JA, Kuang WJ, Yang-Feng TL, Daniel TO, Tremble PM, Chen EY, Ando ME, Harkins RN, Francke U (1986) Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323(6085):226–232CrossRefPubMedGoogle Scholar
  10. 10.
    Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Claesson-Welsh L, Heldin CH (1989) Platelet-derived growth factor. Three isodorms that bind to two distinct cell surface receptors. Acta Oncol 28(3):331–334CrossRefPubMedGoogle Scholar
  12. 12.
    Shinkai A, Ito M, Anazawa H, Yamaguchi S, Shitara K, Shibuya M (1998) Mapping of the site involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J Biol Chem 273(47):31283–31288CrossRefPubMedGoogle Scholar
  13. 13.
    Fuh G, Li B, Crowley C, Cunningham B, Wells JA (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273(18):11197–11204CrossRefPubMedGoogle Scholar
  14. 14.
    Leppanen VM, Prota AE, Jeltsch M, Anisimov A, Kalkkinen N, Strandin T, Lankinen H, Goldman A, Ballmer-Hofer K, Alitalo K (2010) Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci USA 107(6):2425–2430CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dosch DD, Ballmer-Hofer K (2010) Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. FASEB J 24(1):32–38CrossRefPubMedGoogle Scholar
  16. 16.
    Yang Y, Xie P, Opatowsky Y, Schlessinger J (2010) Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc Natl Acad Sci USA 107(5):1906–1911CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kisko K, Brozzo MS, Missimer J, Schleier T, Menzel A, Leppanen VM, Alitalo K, Walzthoeni T, Aebersold R, Ballmer-Hofer K (2011) Structural analysis of vascular endothelial growth factor receptor-2/ligand complexes by small-angle X-ray solution scattering. FASEB J 25(9):2980–2986CrossRefPubMedGoogle Scholar
  18. 18.
    Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J (2007) Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 130(2):323–334CrossRefPubMedGoogle Scholar
  19. 19.
    Sarabipour S, Ballmer-Hofer K, Hristova K (2016) VEGFR-2 conformational switch in response to ligand binding. Elife 5:e13876CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Herren B, Rooney B, Weyer KA, Iberg N, Schmid G, Pech M (1993) Dimerization of extracellular domains of platelet-derived growth factor receptors. A revised model of receptor-ligand interaction. J Biol Chem 268(20):15088–15095PubMedGoogle Scholar
  21. 21.
    Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007) Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA 104(29):12211–12217CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110(6):669–672CrossRefPubMedGoogle Scholar
  23. 23.
    Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80(2):213–223CrossRefPubMedGoogle Scholar
  24. 24.
    Omura T, Miyazawa K, Ostman A, Heidin CH (1997) Identification of a 190-kDa vascular endothelial growth factor 165 cell surface binding protein on a human glioma cell line. J Biol Chem 272(37):23317–23322CrossRefPubMedGoogle Scholar
  25. 25.
    Omura T, Heldin CH, Ostman A (1997) Immunoglobulin-like domain 4 receptor-receptor interactions contribute to platelet-derived growth factor-induced receptor dimerization. J Biol Chem 272(9):12676–12682CrossRefPubMedGoogle Scholar
  26. 26.
    Blechman JM, Lev S, Barg J, Eisenstein M, Vaks B, Vogel Z, Givol D, Yarden Y (1995) The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. Cell 80(1):103–113CrossRefPubMedGoogle Scholar
  27. 27.
    Tao Q, Backer MV, Backer JM, Terman BI (2001) Kinase insert domain receptor (KDR) extracellular immunoglobulin-like domains 4–7 contain structural features that block receptor dimerization and vascular endothelial growth factor-induced signaling. J Biol Chem 276(24):21916–21923CrossRefPubMedGoogle Scholar
  28. 28.
    King C, Stoneman M, Raicu V, Hristova K (2016) Fully quantified spectral imaging reveals in vivo membrane protein interactions. Integr Biol (Camb) 8(2):216–229CrossRefGoogle Scholar
  29. 29.
    Hyde CA, Giese A, Stuttfeld E, Abram Saliba J, Villemagne D, Schleier T, Bina HK, Ballmer-Hofer K (2012) Targeting extracellular domain D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor sites. Mol Cell Biol 32(19):3802–3813CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ruch C, Skiniotis G, Steinmetz MO, Walz T, Ballmer-Hofer K (2007) Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol 14(3):249–250CrossRefPubMedGoogle Scholar
  31. 31.
    Giatromanolaki A, Koukourakis MI, Sivridis E, Chlouverakis G, Vourvouhaki E, Turley H, Harris AL, Gatter KC (2007) Activated VEGFR2/KDR pathway in tumour cells and tumour associated vessels of colorectal cancer. Eur J Clin Invest 37(11):878–886CrossRefPubMedGoogle Scholar
  32. 32.
    Straume O, Akslen LA (2003) Increased expression of VEGF-receptors (FLT-1, KDR, NRP-1) and thrombospondin-1 is associated with glomeruloid microvascular proliferation, an aggressive angiogenic phenotype, in malignant melanoma. Angiogenesis 6(4):295–301CrossRefPubMedGoogle Scholar
  33. 33.
    Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55(18):3964–3968PubMedGoogle Scholar
  34. 34.
    Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, Casley DJ, Bach LA, Kelly DJ, Gilbert RE (1999) Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 48(11):2229–2239CrossRefPubMedGoogle Scholar
  35. 35.
    Urschel K, Garlichs CD, Daniel WG, Cicha I (2011) VEGFR2 signalling contributes to increased endothelial susceptibility to TNF-α under chronic non-uniform shear stress. Atherosclerosis 219(2):499–509CrossRefPubMedGoogle Scholar
  36. 36.
    Svensson S, Jirstrom K, Ryden L, Roos G, Emdin S, Ostrowski MC, Landberg G (2005) ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene 24(27):4370–4379CrossRefPubMedGoogle Scholar
  37. 37.
    Wang Z, Gluck S, Zhang L, Moran MF (1998) Requirement for phospholipase C-gamma1 enzymatic activity in growth factor-induced mitogenesis. Mol Cell Biol 18(1):590–597CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Higgins KJ, Abdelrahim M, Liu S, Yoon K, Safe S (2006) Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun 345(1):292–301CrossRefPubMedGoogle Scholar
  39. 39.
    Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR (2010) Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta 1806(1):108–121PubMedPubMedCentralGoogle Scholar
  40. 40.
    Weigand M, Hantel P, Kreienberg R, Waltenberger J (2005) Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8(3):197–204CrossRefPubMedGoogle Scholar
  41. 41.
    Gonzalez RR, Cherfils S, Escobar M, Yoo JH, Carino C, Styer AK, Sullivan BT, Sakamoto H, Olawaiye A, Serikawa T, Lynch MP, Rueda BR (2006) Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem 281(36):26320–26328CrossRefPubMedGoogle Scholar
  42. 42.
    Spannuth WA, Nick AM, Jennings NB, Armaiz-Pena GN, Mangala LS, Danes CG, Lin YG, Merritt WM, Thaker PH, Kamat AA, Han LY, Tonra JR, Coleman RL, Ellis LM, Stood AK (2009) Functional significance of VEGR-2 on ovarian cancer cells. Int J Cancer 124(5):1045–1053CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sato H, Takeda Y (2009) VEGFR2 expression and relationship between tumor neovascularization and histologic characteristics in oral squamous cell carcinoma. J Oral Sci 51(4):551–557CrossRefPubMedGoogle Scholar
  44. 44.
    Gockel I, Moehler M, Frerichs K, Drescher D, Trinh TT, Duenschede F, Borschitz T, Schimanski K, Biesterfeld S, Herzer K, Galle PR, Lang H, Junginger T, Schimanski CC (2008) Co-expression of receptor tyrosine kinases in esophageal adenocarcinoma and squamous cell cancer. Oncol Rep 20(4):845–850PubMedGoogle Scholar
  45. 45.
    Badalian G, Derecskei K, Szendroi A, Szendroi M, Timar J (2007) EGFR and VEGFR2 protein expressions in bone metastases of clear cell renal cancer. Anticancer Res 27(2):889–894PubMedGoogle Scholar
  46. 46.
    Ryden L, Linderholm B, Nielsen NH, Emdin S, Jonsson PE, Landberg G (2003) Tumor specific VEGF-A and VEGFR2/KDR protein are co-expression in breast cancer. Breast Cancer Res Treat 82(3):147–154CrossRefPubMedGoogle Scholar
  47. 47.
    Ghosh S, Sullivan CA, Zerkowski MP, Molinaro AM, Rimm DL, Camp RL, Chung GG (2008) High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum Pathol 39(12):1835–1843CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fertig EJ, Lee E, Pandey NB, Popel AS (2015) Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes. Sci Rep 15(5):12133. doi: 10.1038/srep12133 CrossRefGoogle Scholar
  49. 49.
    Zhang M, Zhang J, Yan M, Li H, Yang C, Yu D (2008) Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choroidal neovascularization in monkeys. Mol Vis 14:37–49PubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang M, Yu D, Yang C, Xia Q, Li W, Liu B, Li H (2009) The pharmacology study of a new recombinant human VEGF receptor-fc fusion protein on experimental choroidal neovascularization. Pharm Res 26(1):204–210CrossRefPubMedGoogle Scholar
  51. 51.
    Nguyen TT, Guymer R (2015) Conbercept (KH-902) for the treatment of neovascular age-related macular degeneration. Expert Rev Clin Pharmacol 8(5):541–548CrossRefPubMedGoogle Scholar
  52. 52.
    Huang J, Li X, Li M, Li S, Xiao W, Chen X, Cai M, Wu Q, Luo D, Tang S, Luo Y (2012) Effects of intravitreal injection of KH902, a vascular endothelial growth factor receptor decoy, on the retinas of streptozotocin-induced diabetic rats. Diabetes Obes Metab 14(7):644–653CrossRefPubMedGoogle Scholar
  53. 53.
    Su L, Ren X, Wei H, Zhao L, Zhang X, Liu J, Su C, Tan L, Li X (2016) Intravitreal Conbercept (KH902) for surgical treatment of severe proliferative diabetic retinopathy. Rentina 36(5):938–943Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sheng Zhang
    • 1
  • Xiaoping Gao
    • 2
  • Wei Fu
    • 1
  • Shengwei Li
    • 3
  • Limin Yue
    • 1
    Email author
  1. 1.Department of Physiology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduPeople’s Republic of China
  2. 2.Sichuan Institute of Population and Family PlanningChengdu University of Traditional Chinese MedicineChengduPeople’s Republic of China
  3. 3.Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life SciencesSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations