Breast Cancer Research and Treatment

, Volume 161, Issue 3, pp 525–535 | Cite as

The impact of doctor–patient communication on patients’ perceptions of their risk of breast cancer recurrence

  • Nancy K. Janz
  • Yun Li
  • Brian J. Zikmund-Fisher
  • Reshma Jagsi
  • Allison W. Kurian
  • Lawrence C. An
  • M. Chandler McLeod
  • Kamaria L. Lee
  • Steven J. Katz
  • Sarah T. Hawley
Epidemiology

Abstract

Purpose

Doctor–patient communication is the primary way for women diagnosed with breast cancer to learn about their risk of distant recurrence. Yet little is known about how doctors approach these discussions.

Methods

A weighted random sample of newly diagnosed early-stage breast cancer patients identified through SEER registries of Los Angeles and Georgia (2013–2015) was sent surveys about ~2 months after surgery (Phase 2, N = 3930, RR 68%). We assessed patient perceptions of doctor communication of risk of recurrence (i.e., amount, approach, inquiry about worry). Clinically determined 10-year risk of distant recurrence was established for low and intermediate invasive cancer patients. Women’s perceived risk of distant recurrence (0–100%) was categorized into subgroups: overestimation, reasonably accurate, and zero risk. Understanding of risk and patient factors (e.g. health literacy, numeracy, and anxiety/worry) on physician communication outcomes was evaluated in multivariable regression models (analytic sample for substudy = 1295).

Results

About 33% of women reported that doctors discussed risk of recurrence as “quite a bit” or “a lot,” while 14% said “not at all.” Over half of women reported that doctors used words and numbers to describe risk, while 24% used only words. Overestimators (OR .50, CI 0.31–0.81) or those who perceived zero risk (OR .46, CI 0.29–0.72) more often said that their doctor did not discuss risk. Patients with low numeracy reported less discussion. Over 60% reported that their doctor almost never inquired about worry.

Conclusions

Effective doctor–patient communication is critical to patient understanding of risk of recurrence. Efforts to enhance physicians’ ability to engage in individualized communication around risk are needed.

Keywords

Breast cancer Physician communication Risk perception Worry about recurrence 

References

  1. 1.
    Liu Y, Perez M, Aft RL, Massman K, Robinson E, Myles S, Schootman M, Gillanders WE, Jeffe DB (2010) Accuracy of perceived risk of recurrence among patients with early-stage breast cancer. Cancer Epidem Biomark Prev 19(3):675–680. doi:10.1158/1055-9965.epi-09-1051 CrossRefGoogle Scholar
  2. 2.
    Hawley ST, Jagsi R, Morrow M, Janz NK, Hamilton A, Graff JJ, Katz SJ (2014) Social and clinical determinants of contralateral prophylactic mastectomy. JAMA Surg 149(6):582–589. doi:10.1001/jamasurg.2013.5689 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Liu Y, Perez M, Schootman M, Aft RL, Gillanders WE, Jeffe DB (2011) Correlates of fear of cancer recurrence in women with ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res Treat 130(1):165–173. doi:10.1007/s10549-011-1551-x CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Freeman-Gibb LA, Janz NK, Katapodi MC, Zikmund-Fisher BJ, Northouse L (2016) The relationship between illness representations, risk perception and fear of cancer recurrence in breast cancer survivors. Psycho-Oncology. doi:10.1002/pon.4143 PubMedGoogle Scholar
  5. 5.
    Lee-Jones C, Humphris G, Dixon R, Hatcher MB (1997) Fear of cancer recurrence—a literature review and proposed cognitive formulation to explain exacerbation of recurrence fears. Psycho-Oncology 6(2):95–105. doi:10.1002/(sici)1099-1611(199706)6:2<95:aid-pon250>3.0.co;2-b CrossRefPubMedGoogle Scholar
  6. 6.
    Waters EA, Kiviniemi MT, Orom H, Hay JL (2016) “I don’t know” my cancer risk: implications for health behavior engagement. Ann Behav Med 50(5):784–788. doi:10.1007/s12160-016-9789-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Katapodi MC, Lee KA, Facione NC, Dodd MJ (2004) Predictors of perceived breast cancer risk and the relation between perceived risk and breast cancer screening: a meta-analytic review. Prev Med 38(4):388–402. doi:10.1016/j.ypmed.2003.11.012 CrossRefPubMedGoogle Scholar
  8. 8.
    Schapira MM, McAuliffe TL, Nattinger AB (2000) Underutilization of mammography in older breast cancer survivors. Med Care 38(3):281–289CrossRefPubMedGoogle Scholar
  9. 9.
    Fink AK, Gurwitz J, Rakowski W, Guadagnoli E, Silliman RA (2004) Patient beliefs and tamoxifen discontinuance in older women with estrogen receptor—positive breast cancer. J Clin Oncol 22(16):3309–3315. doi:10.1200/jco.2004.11.064 CrossRefPubMedGoogle Scholar
  10. 10.
    Kelly KM, Ajmera M, Bhattacharjee S, Vohra R, Hobbs G, Chaudhary L, Abraham J, Agnese D (2013) Perception of cancer recurrence risk: more information is better. Patient Educ Couns 90(3):361–366. doi:10.1016/j.pec.2011.12.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Janz NK, Li Y, Beesley LJ, Wallner LP, Hamilton AS, Morrison RA, Hawley ST (2016) Worry about recurrence in a multi-ethnic population of breast cancer survivors and their partners. Support Car Cancer 24(11):4669–4678. doi:10.1007/s00520-016-3314-z CrossRefGoogle Scholar
  12. 12.
    Janz NK, Leinberger RL, Zikmund-Fisher BJ, Hawley ST, Griffith K, Jagsi R (2015) Provider perspectives on presenting risk information and managing worry about recurrence among breast cancer survivors. Psycho-Oncology 24(5):592–600. doi:10.1002/pon.3625 CrossRefPubMedGoogle Scholar
  13. 13.
    Tan AS, Nagler RH, Hornik RC, DeMichele A (2015) Evolving information needs among colon, breast, and prostate cancer survivors: results from a longitudinal mixed-effects analysis. Cancer Epidem Biomark Prev 24(7):1071–1078. doi:10.1158/1055-9965.epi-15-0041 CrossRefGoogle Scholar
  14. 14.
    Edwards AG, Naik G, Ahmed H, Elwyn GJ, Pickles T, Hood K, Playle R (2013) Personalised risk communication for informed decision making about taking screening tests. Cochrane Database Syst Rev 2:Cd001865. doi:10.1002/14651858.CD001865.pub3 Google Scholar
  15. 15.
    Brewer NT, Richman AR, DeFrank JT, Reyna VF, Carey LA (2012) Improving communication of breast cancer recurrence risk. Breast Cancer Res Treat 133(2):553–561. doi:10.1007/s10549-011-1791-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Zikmund-Fisher BJ, Janz NK, Hawley ST, Griffith KA, Sabolch A, Jagsi R (2016) Communication of recurrence risk estimates to patients diagnosed with breast cancer. JAMA Oncol. doi:10.1001/jamaoncol.2015.6416 Google Scholar
  17. 17.
    Lipkus IM (2007) Numeric, verbal, and visual formats of conveying health risks: suggested best practices and future recommendations. Med Decis Mak 27(5):696–713. doi:10.1177/0272989x07307271 CrossRefGoogle Scholar
  18. 18.
    Gurmankin AD, Baron J, Armstrong K (2004) The effect of numerical statements of risk on trust and comfort with hypothetical physician risk communication. Med Decis Mak 24(3):265–271. doi:10.1177/0272989x04265482 CrossRefGoogle Scholar
  19. 19.
    Barnes AJ, Hanoch Y, Miron-Shatz T, Ozanne EM (2016) Tailoring risk communication to improve comprehension: do patient preferences help or hurt? Health Psychol 35(9):1007–1016. doi:10.1037/hea0000367 CrossRefPubMedGoogle Scholar
  20. 20.
    Zikmund-Fisher BJ, Fagerlin A, Ubel PA (2008) Improving understanding of adjuvant therapy options by using simpler risk graphics. Cancer 113(12):3382–3390. doi:10.1002/cncr.23959 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rosenberg SM, Tracy MS, Meyer ME, Sepucha K, Gelber S, Hirshfield-Bartek J, Troyan S, Morrow M, Schapira L, Come SE, Winer EP, Partridge AH (2013) Perceptions, knowledge, and satisfaction with contralateral prophylactic mastectomy among young women with breast cancer: a cross-sectional survey. Ann Intern Med 159(6):373–381. doi:10.7326/0003-4819-159-6-201309170-00003 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Halbach SM, Ernstmann N, Kowalski C, Pfaff H, Pfortner TK, Wesselmann S, Enders A (2016) Unmet information needs and limited health literacy in newly diagnosed breast cancer patients over the course of cancer treatment. Patient Educ Couns 99(9):1511–1518. doi:10.1016/j.pec.2016.06.028 CrossRefPubMedGoogle Scholar
  23. 23.
    Katz MG, Jacobson TA, Veledar E, Kripalani S (2007) Patient literacy and question-asking behavior during the medical encounter: a mixed-methods analysis. J Gen Intern Med 22(6):782–786. doi:10.1007/s11606-007-0184-6 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hamstra DA, Johnson SB, Daignault S, Zikmund-Fisher BJ, Taylor JM, Larkin K, Wood A, Fagerlin A (2015) The impact of numeracy on verbatim knowledge of the longitudinal risk for prostate cancer recurrence following radiation therapy. Med Decis Mak 35(1):27–36. doi:10.1177/0272989x14551639 CrossRefGoogle Scholar
  25. 25.
    Galsky MD, Domingo-Domenech J (2013) Advances in the management of muscle-invasive bladder cancer through risk prediction, risk communication, and novel treatment approaches. Clin Adv Hematol Oncol 11(2):86–92PubMedGoogle Scholar
  26. 26.
    Kripalani S, Bengtzen R, Henderson LE, Jacobson TA (2008) Clinical research in low-literacy populations: using teach-back to assess comprehension of informed consent and privacy information. IRB 30(2):13–19PubMedGoogle Scholar
  27. 27.
    Ferguson B, Lowman SG, DeWalt DA (2011) Assessing literacy in clinical and community settings: the patient perspective. J Health Commun 16(2):124–134. doi:10.1080/10810730.2010.535113 CrossRefPubMedGoogle Scholar
  28. 28.
    Partridge A, Adloff K, Blood E, Dees EC, Kaelin C, Golshan M, Ligibel J, de Moor JS, Weeks J, Emmons K, Winer E (2008) Risk perceptions and psychosocial outcomes of women with ductal carcinoma in situ: longitudinal results from a cohort study. J Natl Cancer Inst 100(4):243–251. doi:10.1093/jnci/djn010 CrossRefPubMedGoogle Scholar
  29. 29.
    Hamilton AS, Hofer TP, Hawley ST, Morrell D, Leventhal M, Deapen D, Salem B, Katz SJ (2009) Latinas and breast cancer outcomes: population-based sampling, ethnic identity, and acculturation assessment. Cancer Epidem Biomark Prev 18(7):2022–2029. doi:10.1158/1055-9965.epi-09-0238 CrossRefGoogle Scholar
  30. 30.
    Dillman D, Smyth J, Christian L (2009) Internet, mail, and mixed-mode surveys: the tailored design method, 3rd edn. Wiley, HobokenGoogle Scholar
  31. 31.
    Jagsi R, Griffith KA, Kurian AW, Morrow M, Hamilton AS, Graff JJ, Katz SJ, Hawley ST (2015) Concerns about cancer risk and experiences with genetic testing in a diverse population of patients with breast cancer. J Clin Oncol 33(14):1584–1591. doi:10.1200/jco.2014.58.5885 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Janz NK, Hawley ST, Mujahid MS, Griggs JJ, Alderman A, Hamilton AS, Graff JJ, Jagsi R, Katz SJ (2011) Correlates of worry about recurrence in a multiethnic population-based sample of women with breast cancer. Cancer 117(9):1827–1836. doi:10.1002/cncr.25740 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hawley ST, Griggs JJ, Hamilton AS, Graff JJ, Janz NK, Morrow M, Jagsi R, Salem B, Katz SJ (2009) Decision involvement and receipt of mastectomy among racially and ethnically diverse breast cancer patients. J Natl Cancer Inst 101(19):1337–1347. doi:10.1093/jnci/djp271 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Perez EA, Olson JA Jr, Zujewski J, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin P, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Atkins JN, Berenberg JL, Sledge GW (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373(21):2005–2014. doi:10.1056/NEJMoa1510764 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vaz-Luis I, Ottesen RA, Hughes ME, Mamet R, Burstein HJ, Edge SB, Gonzalez-Angulo AM, Moy B, Rugo HS, Theriault RL, Weeks JC, Winer EP, Lin NU (2014) Outcomes by tumor subtype and treatment pattern in women with small, node-negative breast cancer: a multi-institutional study. J Clin Oncol 32(20):2142–2150. doi:10.1200/jco.2013.53.1608 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fagerlin A, Zikmund-Fisher BJ, Ubel PA, Jankovic A, Derry HA, Smith DM (2007) Measuring numeracy without a math test: development of the Subjective Numeracy Scale. Med Decis Mak 27(5):672–680. doi:10.1177/0272989x07304449 CrossRefGoogle Scholar
  37. 37.
    Zikmund-Fisher BJ, Smith DM, Ubel PA, Fagerlin A (2007) Validation of the subjective numeracy scale: effects of low numeracy on comprehension of risk communications and utility elicitations. Med Deci Mak 27(5):663–671. doi:10.1177/0272989x07303824 CrossRefGoogle Scholar
  38. 38.
    Chew LD, Bradley KA, Boyko EJ (2004) Brief questions to identify patients with inadequate health literacy. Fam Med 36(8):588–594PubMedGoogle Scholar
  39. 39.
    Chew LD, Griffin JM, Partin MR, Noorbaloochi S, Grill JP, Snyder A, Bradley KA, Nugent SM, Baines AD, Vanryn M (2008) Validation of screening questions for limited health literacy in a large VA outpatient population. J Gen Intern Med 23(5):561–566. doi:10.1007/s11606-008-0520-5 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Waters EA, Klein WM, Moser RP, Yu M, Waldron WR, McNeel TS, Freedman AN (2011) Correlates of unrealistic risk beliefs in a nationally representative sample. J Behav Med 34(3):225–235. doi:10.1007/s10865-010-9303-7 CrossRefPubMedGoogle Scholar
  41. 41.
    Lipkus IM, Samsa G, Rimer BK (2001) General performance on a numeracy scale among highly educated samples. Med Decis Mak 21(1):37–44CrossRefGoogle Scholar
  42. 42.
    Peters E, Dieckmann N, Dixon A, Hibbard JH, Mertz CK (2007) Less is more in presenting quality information to consumers. Med Car Res Rev 64(2):169–190. doi:10.1177/10775587070640020301 CrossRefGoogle Scholar
  43. 43.
    Peters E (2008) Numeracy and the perception and communication of risk. Ann NY Acad Sci 1128:1–7. doi:10.1196/annals.1399.001 CrossRefPubMedGoogle Scholar
  44. 44.
    Peters E, Hart PS, Fraenkel L (2011) Informing patients: the influence of numeracy, framing, and format of side effect information on risk perceptions. Med Decis Mak 31(3):432–436. doi:10.1177/0272989x10391672 CrossRefGoogle Scholar
  45. 45.
    Trevena LJ, Zikmund-Fisher BJ, Edwards A, Gaissmaier W, Galesic M, Han PK, King J, Lawson ML, Linder SK, Lipkus I, Ozanne E, Peters E, Timmermans D, Woloshin S (2013) Presenting quantitative information about decision outcomes: a risk communication primer for patient decision aid developers. BMC Med Inform Decis Mak 13(Suppl 2):S7. doi:10.1186/1472-6947-13-s2-s7 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brooks C, Ballinger C, Nutbeam D, Adams J (2016) The importance of building trust and tailoring interactions when meeting older adults’ health literacy needs. Disabil Rehabil 7:1–8CrossRefGoogle Scholar
  47. 47.
    Schillinger D, Piette J, Grumbach K, Wang F, Wilson C, Daher C, Leong-Grotz K, Castro C, Bindman AB (2003) Closing the loop: physician communication with diabetic patients who have low health literacy. Arch Intern Med 163(1):83–90CrossRefPubMedGoogle Scholar
  48. 48.
    Koh HK, Rudd RE (2015) The arc of health literacy. JAMA 314(12):1225–1226. doi:10.1001/jama.2015.9978 CrossRefPubMedGoogle Scholar
  49. 49.
    Rosenberg SM, Partridge AH (2014) Contralateral prophylactic mastectomy: an opportunity for shared decision making. JAMA Surg 149(6):589–590. doi:10.1001/jamasurg.2013.5713 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ahmed H, Naik G, Willoughby H, Edwards AG (2012) Communicating risk. BMJ 344:e3996. doi:10.1136/bmj.e3996 CrossRefPubMedGoogle Scholar
  51. 51.
    Janz NK, Friese CR, Li Y, Graff JJ, Hamilton AS, Hawley ST (2014) Emotional well-being years post-treatment for breast cancer: prospective, multi-ethnic, and population-based analysis. J Cancer Surviv 8(1):131–142. doi:10.1007/s11764-013-0309-3 CrossRefPubMedGoogle Scholar
  52. 52.
    Spellman E, Sulayman N, Eggly S, Peshkin BN, Isaacs C, Schwartz MD, O’Neill SC (2013) Conveying genomic recurrence risk estimates to patients with early-stage breast cancer: oncologist perspectives. Psycho-Oncology 22(9):2110–2116. doi:10.1002/pon.3264 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Engelhardt EG, Pieterse AH, van Duijn-Bakker N, Kroep JR, de Haes HC, Smets EM, Stiggelbout AM (2015) Breast cancer specialists’ views on and use of risk prediction models in clinical practice: a mixed methods approach. Acta Oncol 54(3):361–367. doi:10.3109/0284186x.2014.964810 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nancy K. Janz
    • 1
  • Yun Li
    • 2
  • Brian J. Zikmund-Fisher
    • 1
    • 3
    • 4
  • Reshma Jagsi
    • 5
  • Allison W. Kurian
    • 6
  • Lawrence C. An
    • 7
  • M. Chandler McLeod
    • 2
  • Kamaria L. Lee
    • 3
  • Steven J. Katz
    • 3
    • 8
  • Sarah T. Hawley
    • 3
    • 8
    • 9
  1. 1.Department of Health Behavior and Health Education, School of Public HealthUniversity of MichiganAnn ArborUSA
  2. 2.Department of BiostatisticsUniversity of MichiganAnn ArborUSA
  3. 3.Division of General Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  4. 4.Center for Bioethics and Social Sciences in MedicineUniversity of MichiganAnn ArborUSA
  5. 5.Department of Radiation OncologyUniversity of MichiganAnn ArborUSA
  6. 6.Departments of Medicine and Health Research and PolicyStanford UniversityStanfordUSA
  7. 7.Center for Health Communications Research, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  8. 8.Department of Health Management and PolicyUniversity of MichiganAnn ArborUSA
  9. 9.Veterans Administration Center for Clinical Management ResearchAnn Arbor VA Health Care SystemAnn ArborUSA

Personalised recommendations